DNA Nanotechnology with Molecular Simulations

Aleksei Aksimentiev Department of Physics, University of Illinois

Structural DNA Nanotechnology

DNA origami: a method to **program self-assembly** of custom-shape 3D nanostructures

- Nanometer-scale precision
- High yield
- No expensive fabrication facilities

Custom shapes, channels, and sensors Viral DNA (scaffold)

Nadrian Seeman Paul Rothemund William Shih Hendrik Dietz

For illustration, an unfolding trajectory at a high temperature is played backward.

LL<mark>N</mark>ÒIS

Computer models shaped the field

2D DNA origami

Paul Rothemund (Caltech)

NATURE Vol 440:297 (2006)

Computer-aided design of DNA origami with **caDNAno** (Shih group, Harvard U.)

10 11 12

36

35

S.M. Douglas, at el. Nature (2009)

Other DNA structure design tools

🕱 NanoEngineer-1

Nanorex, Inc

vHelix (Bjorn Hogberg, Karolinska)

Tiamat (Hao Yan, ASU)

DAEDALUS: <u>D</u>NA Origami Sequence <u>D</u>esign <u>Algorithm for User-defined Structures</u>

(Mark Bathe, MIT)

...

Physics-based computational model of DNA nanostructure

Nature Methods 8:221

ACS Nano 11:12426

ENRG MD

Nucleic Acids

Research 44:3013

All-atom MD

PNAS 110:20099 (2013)

Faster dynamics, less computation

Typical problems

Design of new systems Nature Comm. 9:2426 (2018)

Structure prediction doi: 10.1101/865733

Interpretation of experiment Nano Letters 18:1962 (2018)

The DNA origami design process

< 24 hours through simulation feedback (Nucleic Acids Research 48: 5135)

Experimental characterization of DNA nanostructures

Top gel: PMT=380V; no saturation

All-atom molecular dynamics simulations: the computational microscope

Massive parallel computer Blue Waters (UIUC): ~200,000 CPUs Atoms move according to classical mechanics (F= ma)

Time scale: $\sim 0.1-100 \ \mu s$ Length scale: 10K - 1000M atoms or (< 70 nm)³Time resolution: 2 fsSpacial resolution: 0.1 A

Interaction between atoms is defined by molecular force field

Structural fluctuations reveal local mechanical properties

Frenet analysis of MD trajectories characterizes local elasticity

Yoo and Aksimentiev, PNAS 110:20099 (2013)

Tutorial: A Practical Guide to DNA Origami Simulations Using NAMD

Methods in Molecular Biology (Springer Nature) 1811: 209-229 (2018)

http://bionano.physics.illinois.edu/tutorials/practical-guide-dna-origami-simulations-using-namd

- Walk through the protocol for all-atom simulations of DNA origami using the NAMD package

Tiled DNA nanostructures

All-atom MD 165 ns each

Slone et al., New J. Phys. 18:055012 (2016)

nanohub.org/resources/legogen

High-resolution cryoelectron microscop

Petascale computer system

Bai et al, PNAS 109:20012 (2012)

Bai et al, PNAS 109:20012 (2012)

Pseudo-atomic model

Bai et al, PNAS 109:20012 (2012)

MD simulation of the cryo-EM object starting from a caDNAno design

Bai *et al*, PNAS 109:20012 (2012)

7M atom solvated model ~200 ns MD trajectory

MD simulation of the cryo-EM object starting from a caDNAno design

Bai et al, PNAS 109:20012 (2012)

7M atom solvated model ~200 ns MD trajectory

MD simulation of the cryo-EM object starting from a caDNAno design

Bai et al, PNAS 109:20012 (2012)

7M atom solvated model ~200 ns MD trajectory

Electron density maps

Cryo-EM reconstruction

All-atom MD simulation

Comparison with experiment

Maffeo, Yoo & Aksimentiev, NAR 44: 3013 (2016)

EM density psuedo-atomic model

simulation

Elastic network of restraints guided MD (ENRG MD) ~10,000 times more efficient

Solvent replaced with elastic network

Maffeo, Yoo & Aksimentiev, NAR 44: 3013

(2016)

DNA origami structures

Shih and coworkers, Science (2009)

Dietz and coworkers, Science (2015)

²⁵ nm

Chris Maffeo

Chris Maffeo

Chris Maffeo

Chris Maffeo

Chris Maffeo

Chris Maffeo

500 bp dsDNA fragment modeled at different resolutions

Interactions in a simple coarse-grained DNA model

Interactions in a simple coarse-grained DNA model

Typical structural relaxation procedure

Multi-resolution simulations provide highly detailed structures quickly

Coarse-grained model captures programmed curvature

Experiment from : Science 325:725

Adaptive resolution simulation of DNA origami systems

Victoria Birkedal

Group

Andersen et al., Nature 2009

Used to interpret FRET characterization of DNA box variants: *Nanoscale* 11:18475 (2019)

Multi-resolution modeling of self-assembled DNA nanostructures

Dongran Han, Suchetan Pal, Jeanette Nangreave, Zhengtao Deng, Yan Liu, Hao Yan Science 332:342

Multi-resolution workflow extended to DNA polyhedral meshes

E Benson, A Mohammed, J Gardell, S Masich, E Czeizler, P Orponen & B Högberg Nature 523**:**441

Coarse-grained simulations for sampling structural fluctuations

Alexander E. Marras, Lifeng Zhou, Hai-Jun Su and Carlos E. Castro PNAS 112:713

mrDNA simulations are powered by ARBD simulation package

http://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=ARBD

Where to find software, how to use it?

Gitlab

gitlab.engr.illinois.edu/tbgl/tools/mrdna

Web service

bionano.physics.illinois.edu/origami-structure-prediction

		Theo	retical and Comp Bic	outational Rese plogy, and Nan	earch at the li otechnology	nterface of Physics,
Home	Group 오	Publications	Ӯ Research 👽	Models & Me	ethodologies	오 Tutorials 오
DNA	Origami	Structure	Prediction			
This service	e performs a ser	ies of brief coarse-gr	ained simulations of a	DNA origami ob-		L ia
lect, first at l	low resolution to	o produce rapid relax	ation of a structure, th	will require about	copos	
1 hour of ru	ntime. As we ha	ve only limited resou	rces, you may need to	wait significantly	00000	1
longer in the	e queue.					
					AN I	
Name your jo	ob (optional). *				A.	N N
Name your jo origami	ob (optional). *				**	
Name your jo origami Upload a DN/	bb (optional). • A origami design .	json file. Circular strand	s (without breaks) are not	supported.	A.	
Name your jo origami Upload a DNJ Choose File	ob (optional). * A origami design . No file chosen	json file. Circular strand:	s (without breaks) are not	supported.		
Name your jo origami Upload a DN/ Choose File	bb (optional). * A origami design . No file chosen affold sequence. *	json file. Circular strand:	s (without breaks) are not	supported.		
Name your jo origami Upload a DN/ Choose File Select the sco om13mp18	bb (optional). • A origami design . No file chosen affold sequence. • (up to 7,249 bases	json file. Circular strand s)	s (without breaks) are not	supported.		
Name your jo origami Upload a DNJ Choose File Select the sca m13mp18 Custom	bb (optional). * A origami design . No file chosen affold sequence. * (up to 7,249 bases	json file. Circular strand: s)	s (without breaks) are not	supported.		
me your jo rigami	ob (optional). *					N N

Tutorial: Multi-resolution simulations of selfassembled DNA nanostructures

https://gitlab.engr.illinois.edu/tbgl/tutorials/multi-resolution-dna-nanostructures

DNA voltage sensor

Coarse-grained simulations of a FRET plate capture

Nano Letters 18:1962 (2018)

CG simulation of FRET efficiency

Ulrich Keyser Cambridge, UK

Experimental demonstration

DNA membrane channels

Dr. Ulrich F. Keyser

DNA Ion Channels

Langecker, M. *et al.*, *Science*: 338, 932-936.

DNA origami syringe

Small conductance DNA channel

DNA nanostructure catalyzes lipid scrambling

Lipid molecules are asymmetrical distributed in the cell membrane.

apoptosis or thrombin formation:

Lipid translocation through toroidal pores is very fast: 10^7 lipids per second, 10,000 times faster then for a protein enzyme

Dithionite reduction assay can visualize lipid scrambling

Membrane-inserting DNA structures can scramble but non-inserting structures do not

DNA scramblase

DNA nanostructures induce apoptosis in human cells

Tutorial: All-atom simulation membrane-spanning DNA nanopores

http://bionano.physics.illinois.edu/tutorials/all-atom-simulation-membrane-spanning-dna-nanopores

- Walk through the protocol for all-atom simulations of DNA origami nanopores

Tutorials overview

Multi-resolution simulations of self-assembled DNA nanostructures

Chris Maffeo

A Practical Guide to DNA Origami Simulations Using NAMD

All-atom simulation membrane-spanning DNA nanopores

Himanshu Joshi

Acknowledgements

Keyser group:

Elisa Hemmig Clare Fitzgerald Lisa Hecker Alex Ohmann Kerstin Gopfrich

Chen-Yu Li

Chris Maffeo

Himanshu Joshi

nanoHUB nanoBIONODE

US Army Corps of Engineers. Construction Engineering Research Laboratory

