
Aksimentiev Group

Department of Physics and

Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign

Multi-resolution simulations of

self-assembled DNA nanostructures

Chris Maffeo and Aleksei Aksimentiev

Contents

1 Introduction 1

2 Getting started 2

2.1 Required software . 2

2.2 Layout of the tutorial . 3

2.3 Overview of the model . 4

3 Multi-resolution simulations with the mrdna script 5

3.1 Visualization and analysis . 7

3.2 Solvent-free atomic simulations . 11

3.3 Multi-resolution modeling for fast structural relaxation 11

3.4 Working with other design file formats 13

4 Detailed description of the model 15

5 Description of the Python modeling framework 16

6 Writing scripts using the mrdna package 19

1 Introduction

The DNA origami method has brought nanometer-precision fabrication to molecu-

lar biology labs, offering myriads of potential applications in the fields of synthetic

biology, biomolecular medicine, molecular computation, etc. Advancing the method

2 GETTING STARTED 2

further requires controlling self-assembly down to the atomic scale. Hence, fast, ac-

curate and detailed structure prediction can advance the development of complex,

functional DNA origami constructs. Towards this goal, we developed a protocol that

unites the rapid and robust structural relaxation of low-resolution coarse-grained

modeling with the detail and accuracy of atomistic molecular dynamics (MD) sim-

ulation. In this tutorial we will show you how to use the multi-resolution DNA

(mrdna) Python package to perform such simulations.

2 Getting started

This tutorial introduces a Python3 package called mrdna that makes it easy to run

simulations of self-assembled DNA nanostructures. The multi-resolution approach

provides the benefits of coarse-grained modeling, while resulting in a high-resolution

structure suitable for atomistic simulations.

Please note that this tutorial is written for the Linux platform and x86 ar-

chitecture. Proceed at your own risk using other operating systems and architec-

tures. Currently, a CUDA-enabled GPU is required for running simulations using

the ARBD engine.

You should ideally be familiar with the Unix command line, the molecular visu-

alization package VMD, and basic Python syntax. If any is unfamiliar, please refer

to the resources below.

• Command line tutorial: http://rik.smith-unna.com/command line bootcamp

• VMD tutorial: https://www.ks.uiuc.edu/Training/Tutorials

• Python tutorial: http://www.learnpython.org (basic tutorials + numpy are

recommended)

2.1 Required software

This tutorial requires Python3 with the mrdna and jupyter packages and all de-

pendencies installed. Installing mrdna can be achieved by downloading or cloning

the package from https://gitlab.engr.illinois.edu/tbgl/tools/mrdna, changing to the

mrdna directory, and running python3 setup.py install. In addition to these

Python packages, you must install the biomolecular visualization program VMD and

the CUDA-accelerated simulation engine ARBD. Installation of the atomic simula-

tion engine NAMD is recommended.

http://rik.smith-unna.com/command_line_bootcamp
https://www.ks.uiuc.edu/Training/Tutorials
http://www.learnpython.org
https://gitlab.engr.illinois.edu/tbgl/tools/mrdna
https://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=VMD
http://bionano.physics.illinois.edu/arbd
https://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=NAMD

2 GETTING STARTED 3

2.2 Layout of the tutorial

Tutorial is divided into five steps. This document will walk you through the first two

steps, showing you how to run multi-resolution simulations using a command-line

utility. Each of the remaining three steps contain an interactive Jupyter notebook,

which teach you how to write scripts that manipulate multi-resolution models. The

tutorial aims to be a comprehensive guide, and you will likely want to work through

across at least two sessions. A good time to take a break is between step2 and

step3. The layout of directories and files in this tutorial is depicted below.

2 GETTING STARTED 4

multi-resolution-dna-nanotechnology/

|-- multi-resolution-dna-nanotechnology.pdf

|-- README.md

|-- step1/

| |-- curved-hextube.json

| |-- example-output/

| |-- hextube.json

| |-- load-mrdna.tcl

| |-- pris-6conn-86b.json

| ‘-- slider-dist-exp.dat

|-- step2/

| |-- box.mmp

| |-- example-output/

| |-- hextube-cando.pdb

| |-- hextube-nab.pdb

| |-- hextube-oxdna.pdb

| |-- load-mrdna.tcl -> ../step1/load-mrdna.tcl

| ‘-- vHelix/

|-- step3/

| |-- basic-mrdna.ipynb

| |-- example-output/

| |-- hextube.json

| |-- load-mrdna.tcl -> ../step1/load-mrdna.tcl

| ‘-- notebook-src/

|-- step3.ipynb

|-- step4/

| |-- advanced-mrdna.ipynb

| |-- example-output/

| |-- load-mrdna.tcl -> ../step1/load-mrdna.tcl

| ‘-- pris-6conn-86b.json -> ../step1/pris-6conn-86b.json

‘-- step5/

|-- 2-layer-plate.json

|-- comsol-to-dx/

|-- example-output/

|-- load-mrdna.tcl -> ../step1/load-mrdna.tcl

|-- potential-600.dx

|-- sequence.txt

‘-- voltage-sensor.ipynb

2.3 Overview of the model

The mrdna Python package ships with a command-line script that provides users

with convenient access to the modeling framework. To run a multi-resolution sim-

ulation, all one has to do is provide an appropriate DNA nanostructure design file.

3 MULTI-RESOLUTION SIMULATIONS WITH THE MRDNA SCRIPT 5

A B C D

Figure 1: Multi-resolution modeling of a simple object made in cadnano.

Currently the script supports cadnano ‘json’ files, vHelix ‘ma’ files, and atomistic

PDB files.

Regardless of the type of input, the script will run a low-resolution coarse-grained

simulation with approximately 5 basepairs represented by each bead to provide fast

relaxation of the DNA structure. With such a coarse representation we found that

it was not practical to represent the twist locally. Instead we represent the twist via

a torsion between consecutive crossovers within a helix.

The low-resolution simulation is followed by a pair of high-resolution (roughly 2

bead/basepair) coarse-grained simulations in which the orientation of each basepair

is represented locally using an “orientation” bead. A harmonic potential is applied

to the dihedral angle formed by adjacent basepair beads and their orientation beads

to represent the twist elasticity of DNA in a local manner. When mapping from low-

to high-resolution, the orientation of a basepair is not known, and hence the linking

number or number of turns for a given stretch of dsDNA may be incorrect. The

first of the high-resolution simulations uses dihedral angle potentials for the local

twist that are smoothly truncated at about 3 kBT , allowing the linking number of a

DNA helix to relax. In the second of the high-resolution simulations, the potential

increases harmonically, effectively preventing the linking number from changing.

The secondary structure of the DNA is fixed in both low- and high-resolution

models; the models are intended for structural relaxation given the double-helical

structure of the DNA. If you suspect hybridization to be important for modeling your

object, we suggest application of the oxDNA model [9, 11], which was parametrized

specifically to capture melting thermodynamics of DNA. Even if you choose to

use the oxDNA model, the models presented here may help you improve oxDNA

simulation’s initial conditions.

3 Multi-resolution simulations with the mrdna script

To get started, open a terminal and navigate to the step1 directory, and then call

the following command:

3 MULTI-RESOLUTION SIMULATIONS WITH THE MRDNA SCRIPT 6

mrdna -d sim1 hextube.json

Congratulations! You are now running your first set of multi-resolution simula-

tions of a DNA origami object! Please be aware that the entire simulation

would take a long time to complete. A little later in the tutorial, you

will be instructed to stop the simulation before it ends. For now, continue

reading and working through the tutorial while the simulation runs. The mrdna

script should print some limited information as it builds the simulation system. It

will then create the sim1 directory (supplied using the ‘-d’ option), populate the

directory with the configuration files needed to run a simulation using the ARBD

engine. Then the script will call ARBD, running the first of three coarse-grained

simulations.

At any time, you can open another terminal and inspect the contents of the sim1

directory, which should look something like what is shown below:

sim1/

|-- hextube-1.bd

|-- hextube-1.particles.txt

|-- hextube-1.pdb

|-- hextube-1.psf

|-- output/

| |-- hextube-1.dcd

| ‘-- hextube-1.restart

‘-- potentials/

|-- angle-14.123-180.000.dat

‘-- ...

Briefly, hextube-1.bd is the configuration file for ARBD, which is passed to the

simulation engine. This file references a number of other automatically generated

text files to describe the system, such as hextube-1.particles.txt, which de-

scribes the coordinates of each bead. The many files in the potentials directory

describe all the interactions in the system in simple two-column format. The files

hextube-1.psf and hextube-1.pdb can be loaded into VMD to view the initial con-

figuration of the system, but are not actually used by the ARBD engine. Finally, the

output directory contains the DCD trajectory and simulation restart files output by

ARBD. Load the part of the trajectory that has already been written using VMD

with vmd hextube-1.psf output/hextube-1.dcd (or from the File menu within

VMD). You should see a set of connected beads like in the left panel of Fig. 2.

By default, each step of the multi-resolution will run for a ten million steps, writ-

3 MULTI-RESOLUTION SIMULATIONS WITH THE MRDNA SCRIPT 7

Figure 2: Multi-resolution simulation of a six-helix bundle of DNA.

ing frames to the DCD every 10,000 steps. However, this might be an insufficient

or excessive number of steps for a given system; the required duration of the simu-

lation for the structure to relax will, in general, increase with the size of the object.

For typical-sized DNA origami objects, this number of steps is usually more than

enough, requiring roughly thirty minutes of real time using a recent consumer grade

GPU (such as a GTX-1080). With older hardware, the simulation could require

substantially more time.

Close VMD and return to the first terminal with the simulation running and

type Control-c to stop the simulation. Now run mrdna with the following options

to quickly perform a complete (though short) set of multi-resolution simulations.

mrdna -d sim2 --coarse-steps 1e4 --fine-steps 1e4 --output-period 1e2 \

hextube.json

3.1 Visualization and analysis

When the simulations are finished, use the following command to load the simula-

tions into VMD:

vmd -e load-mrdna.tcl -args sim2

3 MULTI-RESOLUTION SIMULATIONS WITH THE MRDNA SCRIPT 8

Figure 3: Multi-resolution simulation of a curved six-helix bundle of DNA. The
representation of the DNA is “CPK” for the coarse-grained models, and “vdW” for
the atomic model. The atomic DNA is colored by “segname”.

The load-mrdna.tcl script is provided to simplify and streamline the process

of loading all of the multi-resolution simulation trajectories into VMD. Notice the

differences between the coarse- and fine-resolution simulations. Also notice that the

mrdna script has generated an atomistic model of the DNA object.

During the simulation, the object drifts and rotates. You can remove these global

motions by typing the following commands into the tkConsole:

set ref [atomselect 0 all frame 0]

set sel [atomselect 0 all]

for {set f 0} {$f < [molinfo 0 get numframes]} {incr f} {

$sel frame $f ;# work on frame $f

set R [measure fit $sel $ref] ;# get the 4x4 transformation

$sel move $R

}

puts "transformation at last frame:"

puts [lindex $R 0]

puts [lindex $R 1]

puts [lindex $R 2]

puts [lindex $R 3]

Now, you can use root mean square deviation (RMSD) as a metric to see how

far the structure has deviated from its initial position.

3 MULTI-RESOLUTION SIMULATIONS WITH THE MRDNA SCRIPT 9

set ch [open "hextube-rmsd.dat" w]

for {set f 0} {$f < [molinfo 0 get numframes]} {incr f} {

$sel frame $f

set RMSD [measure rmsd $sel $ref]

puts $ch "$f $RMSD"

}

close $ch

Then you can plot the RMSD using your favorite plotting software, for example

xmgrace or matplotlib. Do you think the simulation was long enough? Using

RMSD with the idealized coordinates as a reference is best for determining whether

a simulation needs to run longer for the structure to converge. Having the RMSD

become flat does not necessarily mean the structure is done changing. However, for

these small structures, one can usually tell if the simulation has run for long enough

by visual inspection.

Another interesting quantity to examine is the root mean square fluctuation

(RMSF) of each bead in the model. The first step in computing the RMSF is

normally to perform a global alignment, but you’ve already done this. Next, we

simply compute the RMSF of each bead. Instead of outputting the RMSF to a file

for plotting, you can set the RMSF to one of the atoms’ fields in VMD allowing you

to visualize the fluctuations.

set oldBeta [$sel get beta] ;# save the old values so they can be restored

set RMSF [measure rmsf $sel]

$sel set beta $RMSF

Now open the representation window of VMD (Main → Graphics → Representa-

tions), select molecule “0”, and change the “Coloring Method” to “beta”. The color

of the structure will range from red to white to blue with increasing RMSD. The

values corresponding to the ends of the color range can be set in the “Trajectory”

tab of the Graphical Representations window. When you are done examining the

structure, restore the original Beta values.

$sel set beta $oldBeta

DNA nanostructures can be tagged by complementary fluorescent dyes to allow

fluorescent resonance energy transfer (FRET) measurements. In these measure-

ments, the donor dye absorbs light from a (typically) green laser. A portion of

the energy absorbed by the dye is re-emitted as green fluorescence. The remaining

energy is transfered through a distance-dependent quantum process to the nearby

acceptor dye, which radiates (typically) red light. The energy transfer is mediated

3 MULTI-RESOLUTION SIMULATIONS WITH THE MRDNA SCRIPT 10

by dipole–dipole interactions and occurs with a likelihood roughly proportional to

1/r6, where r is the distance between the dyes. The ratio of red and green inten-

sity captured then reports semi-quantitatively on the distance between the dyes.

These measurements are typically most sensitive to changes in the distance between

the dyes when they are located at about 6 nm. Hence, simulations can help guide

the choice of dye attachement location before expensive and time-consuming FRET

experiments are performed.

Suppose that you are interested in deformations of the ends of simple DNA

origami nano structures, and you are considering labeling several different sites

on a six-helix bundle. You plan to label the 3′ ends of select staple strands. In

particular you are considering adding donor/acceptor pairs at the following sites:

(3[74] & 1[78]), (3[74] & 5[81]) and (1[78] & 5[81]), where X[Y] refers to the basepair

in cadnano in helix with index X at the base index Y. Based on the simulations,

determine which of the sites should provide the greatest sensitivity of the FRET

efficiency to a given change in distance. First, create graphical representations of

the candidate beads using the occupancy and beta field, which have been populated

by the mrdna package with values corresponding to the candano helix and base

indices, respectively. For each pair of dyes, create selections using the text from the

graphical representations

Replace X1/Y1/X2/Y2 with appropriate values

set donor [atomselect 0 "occupancy X1 and beta Y1"]

set acceptor [atomselect 0 "occupancy X2 and beta Y2"]

You can now write the distances between the dyes to a file with:

set ch [open hextube-dye-distance1.dat w]

set f 0

set i [$donor get index]

set j [$acceptor get index]

foreach d [measure bond "$i $j" molid 0 frame all] {

puts $ch "$f $d"

incr f

}

close $ch

Do this for each pair of dyes, and use your favorite plotting software to extract

distance distributions to decide which attachment location will be best.

3 MULTI-RESOLUTION SIMULATIONS WITH THE MRDNA SCRIPT 11

3.2 Solvent-free atomic simulations

All-atom molecular dynamics (MD) simulation with explicit representation of sol-

vent remains the gold-standard for structural simulation of DNA nanostructures.

This method is slow, even with access to supercomputing resources, and is therefore

poorly suited for routine structure prediction. We previously demonstrated [6] that,

using an elastic network of restraints within each DNA helix, a structure for the

“pointer” DNA origami object could be obtained without solvent that compared

favorably with the available cryo-electron microscopy reconstruction. The Elastic

Network of Restraints Guided MD (ENRG-MD) approach allowed structural relax-

ation of the “pointer” in an overnight simulation on a workstation.

The mrdna script generates a NAMD configuration file that will perform and

ENRG-MD simulation, that you may optionally run with:

cd sim2

namd2-cpu hextube-4.namd >& output/hextube-4.log &

The symbols “>&” redirect all output into the file output/hextube-4.log, and

the ampersand (&) at the end of the line makes the simulation run in the background

so you don’t have to wait for the simulation to end to use your terminal. You

can monitor the simulation with less output/hextube-4.log and you can stop

the simulation by typing fg to bring the job into the foreground, and then typing

“Control-c” to interrupt it.

3.3 Multi-resolution modeling for fast structural relaxation

The six-helix bundle is a very simple object whose relaxed configuration differs

only a little from the initial structure, and as a result, one can easily perform an

ENRG-MD simulation of this object without first performing coarse-grained struc-

tural relaxation, simply by uploading the design file to our ENRG-MD server.

Cadnano designs often include a pattern of skips and insertions that program a

twisted or curved shape. In contrast to simple structures like the six-helix bundle,

such designs can be problematic for the ENRG-MD protocol because the local DNA

structure quickly distorts to accommodate a bad global structure, becoming kineti-

cally trapped in local energy minima. In fact, this problem originally motivated the

development of the multi-resolution modeling scheme described in this document.

We have provided an example of such an object in curved-hextube.json. Open

the file using cadnano. Notice that one side of the structure contains insertions and

one side contains deletions. When you are satisfied, close cadnano and run the

design using mrdna as follows.

http://dx.doi.org/10.1093/nar/gkw155
http://bionano.physics.illinois.edu/origami-structure

3 MULTI-RESOLUTION SIMULATIONS WITH THE MRDNA SCRIPT 12

E
x
te
n
s
io
n
s

Figure 4: Coarse-grained simulation of the a sliding object designed by the Castro
group [7]. The cyan region depics the fixed base of the object, and the green region
depicts the sliding bearing.

mrdna --coarse-steps 2e5 --fine-steps 1e5 --output-period 1e3 -d sim3 \

curved-hextube.json

When the simulation is finished, enter the sim3 directory and visually inspect

atomic structure using VMD. Is the object curved as expected? Is it twisted in ways

that are unexpected? In this way, simulations can provide valuable feedback during

an iterative design process.

The low-resolution simulations can also be useful for sampling the configurational

space explored by “dynamic” DNA objects. As an example, you can simulate the

DNA “slider” object developed by the Castro group [7] with:

mrdna --coarse-steps 1e7 --fine-steps 1e3 --output-period 1e2 -d sim4 \

pris-6conn-86b.json

This simulation may take some time to complete. If you are pressed for time,

it is recommended that you verify that the simulation works before stopping it and

refering to the trajectory in example-output/sim4. Note that a significantly longer

simulation is needed to get fully converged results.

Load the simulation results into VMD with the load-mrdna.tcl script. The

Castro group took many transmission electron microscope images of these objects,

and from the images they were able to measure distributions of the distance between

3 MULTI-RESOLUTION SIMULATIONS WITH THE MRDNA SCRIPT 13

the bearing base and the slider [7], see the file slider-dist-exp.dat. You can

extract a similar distribution from your simulation. To achieve this you need to

create two atom selections: one for the base of the slider, as far from the bearing as

possible, and one for the opposite side of the bearing, which slides over the central

six helices. Start by selecting the entire base and the entire bearing, as shown

in Fig. 4. Go to frame 0 and open the Graphical Representations window in

VMD. Your first selection should be “z > -300 and name "D.*"”. Your second

selection should be quite similar, but should use a different geometric selection. In

addition it should somehow exclude the central six helices. This can be achieved

with a geometric selection or by excluding beads based on the cadnano virtual helix

ID. Conveniently, the mrdna package writes the virtual helix ID from cadnano to

the “occupancy” field of the pdb so, for example, you can select helix 5 and 7 from

cadnano in VMD using the syntax “occupancy 5 7”. Now refine the geometric

selection so only a few layers of beads are selected from the base and from the

bearing. Now, copy the selection text from the Graphical Representations window

into the tkConsole, modifying the first two lines below:

set sel1 [atomselect 0 {z > -100 and name "D.*"}]

set sel2 [atomselect 0 {z < -780 and name "D.*" and not occupancy 7 8 21 22 35 36}]

set ch [open slider-dist.dat w]

for {set f 0} {$f < [molinfo 0 get numframes]} {incr f} {

$sel1 frame $f

$sel2 frame $f

set r1 [measure center $sel1]

set r2 [measure center $sel2]

set distance [veclength [vecsub $r2 $r1]]

set distance [expr 0.1*$distance] ;# convert to nm

puts $ch "$f $distance"

}

close $ch

Close VMD and plot contents of the file slider-dist.dat with your favorite

plotting tool. Does the data look converged? It may be interesting to examine the

longer simulation provided in the example-output directory. Finally, you construct

a histogram of the distances and compare to the experimentally obtained distribu-

tion available in slider-dist-exp.dat [7]. Note that you will need to normalize

the distributions by the area under each curve to obtain a fair comparison.

3.4 Working with other design file formats

The field of structural DNA nanotechnology is currently dominated by DNA origami,

but there are a number of exciting alternative approaches to making self-assembled

3 MULTI-RESOLUTION SIMULATIONS WITH THE MRDNA SCRIPT 14

nanoscale objects out of DNA. Accordingly there are a number computational tools

for designing DNA nanostructures besides cadnano. These include, but are not

limited to, Nanoengineer-1 [8], Tiamat [13], vHelix [2], DAEDALUS [12], and nucleic

acid builder [3]. Being a relatively new project, the mrdna package so far only

implements readers for cadnano json and vHelix Maya design files.

Change to the step2 directory and you will find the vHelix directory containing

a file called bunny.ma that was created by Björn Högberg’s group [2]. You can run

a simulation of the bunny object (or any of the other objects in vHelix) using the

same mrdna command as before, but supplying the vHelix file as input.

mrdna --coarse-steps 1e6 --fine-steps 1e5 --output-period 1e4 -d sim1 \

vHelix/bunny.ma

Note that full relaxation of such a large object would require a longer simulation.

When the simulation completes, load the results into VMD for visual inspection.

When you are done, close VMD.

In addition to the cadnano and vHelix readers, we recently created a reader

for atomistic PDB files. This makes it possible to use the output from many

existing design and simulation tools as the input for a multi-resolution simula-

tion. For example, we have supplied the original DNA box design in box.mmp,

which was produced using Nanoengineer-1. Although we do not yet have a Nano-

engineer reader in mrdna, we can use an already-developed web-service to convert

the nanoengineer file into an atomistic PDB. In a web browser, navigate to bio-

nano.physics.illinois.edu/nanoengineer2pdb, upload box.mmp, name your job “box”,

check the “PDB only” option, click “Convert Structure”, wait for the server to gen-

erate your pdb, and finally click on the link to download your pdb file. Extract

box.pdb from the archive to the current directory before proceeding (e.g. tar -xzf

box.tar.gz). Then, you can run a short simulation of the box using the following:

mrdna --coarse-steps 1e6 --fine-steps 1e6 --output-period 1e4 -d sim2 box.pdb

Examine the simulation results in VMD. Notice that the box fluctuates signif-

icantly during the coarse-grained simulation. Such simulations can be useful for

estimating the underlying cause of FRET fluctuations.

PDB files written by different software packages often follow slightly differ-

ent conventions. We’ve tested our PDB reader using files output by the popu-

lar DNA nanotechnology design and simulation packages CanDo, oxDNA (via the

convert to atomic.py script), and NucleicAcidBuilder. You can run each a six-

helix bundle made from each of these tools by using the following bash command:

http://bionano.physics.illinois.edu/nanoengineer2pdb
http://bionano.physics.illinois.edu/nanoengineer2pdb

4 DETAILED DESCRIPTION OF THE MODEL 15

Figure 5: Multi-resolution modeling of a DNA box designed with Nanoengineer-1.

for f in hextube*pdb; do

mrdna --coarse-steps 1e4 --fine-steps 1e3 --output-period 1e2 -d sim3 $f

done

We encourage you to test PDB files produced by other software that you use. If

you encounter any issues, please file a bug report at:

https://gitlab.engr.illinois.edu/tbgl/tools/mrdna/issues/new or contact Chris Maf-

feo at cmaffeo2@illinois.edu.

4 Detailed description of the model

This section provides a more detailed description of how the model is constructed.

Reading this material is optional; if you are pressed for time it is recommended that

you skip this section, returning later when you have time.

The mrdna package converts model of DNA with position and orientation of each

helix described parametrically into a bead-based realization of the model. First,

beads are placed at the connections between segments every crossover and at every

intrahelical connection. When two of the connection beads are placed within one

nucleotide of one another, they are merged together.

Next, in each segment, “intrahelical” beads are placed between each pair of “con-

secutive” connection beads with a minimum user-specified density. A bond connects

consecutive intrahelical beads with a separation-dependent rest-length (3.4 Å/bp;

5 Å/nt) and spring constant derived from the elastic moduli of dsDNA and ss-

DNA [4]. A harmonic angle potential is placed on consecutive triplets of intrahelically-

connected beads, with a 180◦ rest angle and spring constant derived from the

persistence length of ssDNA. Optionally, an orientation bead is placed alongside

https://gitlab.engr.illinois.edu/tbgl/tools/mrdna/issues/new
mailto:cmaffeo2@illinois.edu

5 DESCRIPTION OF THE PYTHON MODELING FRAMEWORK 16

each dsDNA backbone bead, attached to its parent bead by a harmonic poten-

tial (1.5 Å rest-length; kspring =30 kcal/mol. An harmonic angle (90◦ rest angle;

kspring = 0.5kLp kcal/mol) potential is placed between consecutive intrahelical beads

and each of the orientation beads. A dihedral angle potential is placed between each

orientation bead, its parent intrahelical bead, the adjacent intrahelical bead and the

corresponding orientation bead with a separation-dependent rest angle derived from

the ∼ 90-nm twist-persistence length of dsDNA [5].

To reduce the number of bead types, a hierarchical clustering algorithm is ap-

plied, classifying the bead types according to number of nucleotides represented by

the bead.

Finally, a harmonic bond is placed between intrahelical beads on either side of

each crossover connection. The spring constant (4 kcal/mol-Å2) and rest length

(18.5 Å) of the bond were derived from the distribution of crossover distances ob-

served in atomistic simulations [10]. If the model is constructed without a local

representation of the twist a dihedral angle potential is applied between the intrahe-

lical beads at consecutive crossovers within each helix. If the model is constructed

with a local representation of the twist, an angle potential is placed on each side

of the crossover between the orientation bead, its parent bead and the intrahelical

bead on the other side of the crossover at the adjacent helix with a rest length of

120◦.

5 Description of the Python modeling framework

This section attempts to provide an overview of the Python framework. Reading this

material is optional; you can proceed to the next section if you want to immediately

get started using the framework.

Requisite knowledge. The remainder of the tutorial covers usage

of the mrdna Python package (not the script). Hence, the tutorial as-

sumes basic familiarity with Python. For example, you should be familiar

with concepts such as importing modules, using defs (functions) and

objects, and preferably working with numpy arrays. If any of these is un-

familiar, we strongly recommend that you take a few moments to work

through some basic Python tutorials before completing this section. A

concise, interactive web-based set of tutorials is freely available through

learnpython.org.

The contents of the mrdna package are listed below.

.

|-- coords.py

www.learnpython.org

5 DESCRIPTION OF THE PYTHON MODELING FRAMEWORK 17

|-- __init__.py

|-- model/

| |-- arbdmodel.py

| |-- CanonicalNucleotideAtoms.py

| |-- dna_sequence.py

| |-- __init__.py

| |-- nbPot.py

| ‘-- nonbonded.py

|-- readers/

| |-- cadnano_segments.py

| |-- __init__.py

| |-- polygon_mesh.py

| |-- segmentmodel_from_lists.py

| ‘-- segmentmodel_from_pdb.py

|-- resources/

| ‘-- ...

|-- segmentmodel.py

‘-- simulate.py

The init .py files contain code that is executed when the mrdna package or

a subpackage (such as model or readers) is first imported. Classes defined in the

module mrdna.model.arbdmodel can be used to build models from point-particles

interacting through bonded and non-bonded potentials described in nbPot.py and

nonbonded.py. The Particle class in arbdmodel is meant to represent a single

point-like particle with a position in 3D space. It should normally have a type

attribute (following convention, the underscore distinguishes the attribute name

from a built-in Python keyword) that should normally refer to an object of the

ParticleType class. The ParticleType class is meant to hold information like the

charge or mass of the particle.

The arbdmodel module also defines the Group class, which has a “children”

attribute and can be used with Particle objects to compose hierarchies for bead-

based models. Every object contained in the “children” list should have a “parent”

attribute that points back to the Group object. Group objects can have an orienta-

tion matrix and position vector, which is applied to each of it’s child objects when

their coordinates are requested.

Also in arbdmodel.py, the class ArbdModel extends the Group class to set up and

perform coarse-grained simulations using the GPU-accelerated package ARBD [1].

This class can additionally write NAMD configuration files for atomistic models

using the CHARMM36 force-field, but this interface is currently specific to DNA

5 DESCRIPTION OF THE PYTHON MODELING FRAMEWORK 18

simulations and does not attempt to wrap the many options available during NAMD

configuration.

Please note that the types defined in arbdmodel.py are flexible and convenient

for development, but do not scale very well beyond ten-thousand particles. Hence,

they can be expected to change substantially in the future.

The class SegmentModel in the segmentmodel module, along with several associ-

ated classes, provides a general data structure for modeling objects built using DNA

nanotechnology with a given secondary structure (i.e. the modeling framework does

not currently support melting and hybridization). A SegmentModel is composed

from a list of one or more DoubleStrandedSegment and SingleStrandedSegment

objects that inherit from the Segment class, which in turn inherits from the Group

class. A Segment object represents a contiguous polymeric stretch of DNA in 3-

dimensional space using splines. Each segment can contain Connection objects that

joins two Location objects, one on each Segment. The Location objects specify a

position in terms of contour-length and strand (in forward or reverse direction with

respect to 5′-to-3′ direction). Both of these objects can have a “type ” attribute that

is used to indicate whether a connection is a “crossover” or “intrahelical” connec-

tion. The SegmentModel can generate beads with a minimum resolution specified

by the user to realize a coarse-grained particle-based model of the DNA system

that is compatible with ARBD. This functionality is likely to be refactored into

another class in the future to make the code more modular. After a simulation, the

coordinates taken from the final frame or from a time-averaged window of the tra-

jectory can be used to update the splines representing the position and orientation

of each single- or double-stranded region of DNA. In this way, the SegmentModel

facilitates mapping between different-resolution models of a DNA strand. Finally,

the SegmentModel object can create an atomistic model of a DNA nanotechnology

object with ENRG-MD restraints.

We have already implemented several functions that construct a SegmentModel

from various input sources including cadnano data structures and file-based output

from vHelix. In addition to importing models form these sources, it is possible,

though challenging, to directly use the classes in segmentmodel.py to construct

simple DNA nanotechnology objects. We intend to simplify and streamline the

model-building API to make such manipulation easier for end-users with limited

programming experience.

Once a model has been created, one usually would like to run a simulation

with the model. The ArbdModel class (from which SegmentModel inherits) has a

simulate method for directly running a simulation. However, the mrdna.simulate

module provides the function multiresolution simulation, which takes a model

6 WRITING SCRIPTS USING THE MRDNA PACKAGE 19

as an argument and automates the multi-resolution simulation protocol.

These modules can be combined in various ways to run simulations of DNA

nanostructures. For example, the code in these modules was used to almost trivially

write the mrdna script that you have been using.

6 Writing scripts using the mrdna package

The remaining portion of the tutorial uses an interactive notebook to demonstrate

how models can be constructed and manipulated from code. The notebook will walk

you through the creation of simple models, culminating with the reproduction of a

portion of a recently published study.

Navigate to the root directory of the tutorial. Here you can find a Jupyter

notebook that will interactively walk you through some aspects of the modeling

framework. Open the notebook by typing jupyter notebook step3.ipynb. This

should start the jupyter server and open a browser to the page for your notebook.

References

[1] Atomic resolution brownian dynamics. http://bionano.cpanel.engr.illinois.edu/arbd,

2016.

[2] E. Benson, A. Mohammed, J. Gardell, S. Masich, E. Czeizler, P. Orponen, and

B. Högberg. DNA rendering of polyhedral meshes at the nanoscale. Nature,

523(7561):441–444, 2015.

[3] R. A. Brown and D. A. Case. Second derivatives in generalized Born theory.

J. Comput. Chem., 27(14):1662–1675, 2006.

[4] S. Cocco, J. F. Marko, and R. Monasson. Theoretical models for single-molecule

DNA and RNA experiments: from elasticity to unzipping. Biophysique, 2002.

[5] D. J. Kauert, T. Kurth, T. Liedl, and R. Seidel. Direct mechanical measure-

ments reveal the material properties of three-dimensional DNA origami. Nano

Lett., 11(12):5558–5563, 2011.

[6] C. Maffeo, J. Yoo, and A. Aksimentiev. De novo prediction of DNA origami

structures through atomistic molecular dynamics simulation. Nucleic Acids

Res., 44(7):3013–3019, 2016.

REFERENCES 20

[7] A. E. Marras, L. Zhou, H.-J. Su, and C. E. Castro. Programmable motion of

DNA origami mechanisms. Proc. Natl. Acad. Sci. U. S. A., 112(3):713–718,

2015.

[8] Nanorex, Inc. Nanoengineer-1, v.a8, 2006.

[9] T. E. Ouldridge, A. A. Louis, and J. P. K. Doye. Structural, mechanical, and

thermodynamic properties of a coarse-grained DNA model. J. Chem. Phys.,

134(8):085101, Feb. 2011.

[10] S. Slone, C.-Y. Li, J. Yoo, and A. Aksimentiev. Molecular mechanics of DNA

bricks: in situ structure, mechanical properties and ionic conductivity. New J.

Phys., 18(5):055012, 2016.

[11] B. E. Snodin, F. Randisi, M. Mosayebi, P. Šulc, J. S. Schreck, F. Romano,

T. E. Ouldridge, R. Tsukanov, E. Nir, A. A. Louis, and J. P. Doye. Introducing

improved structural properties and salt dependence into a coarse-grained model

of DNA. J. Chem. Phys., 142(23):06B613 1, 2015.

[12] R. Veneziano, S. Ratanalert, K. Zhang, F. Zhang, H. Yan, W. Chiu, and

M. Bathe. Designer nanoscale DNA assemblies programmed from the top down.

Science, 352(6293):1534–1534, 2016.

[13] S. Williams, K. Lund, C. Lin, P. Wonka, S. Lindsay, and H. Yan. Tiamat: A

three-dimensional editing tool for complex DNA structures. In A. Goel, F. C.

Simmel, and P. Sośık, editors, DNA Computing, volume 5347 of Lecture Notes

in Computer Science, pages 90–101. Springer Berlin Heidelberg, 2009.

	Introduction
	Getting started
	Required software
	Layout of the tutorial
	Overview of the model

	Multi-resolution simulations with the mrdna script
	Visualization and analysis
	Solvent-free atomic simulations
	Multi-resolution modeling for fast structural relaxation
	Working with other design file formats

	Detailed description of the model
	Description of the Python modeling framework
	Writing scripts using the mrdna package

