## Introduction to MD simulations of DNA systems

Aleksei Aksimentiev

### **Biological Modeling at Different Scales**

spanning orders of magnitude in space and time



### The computational microscope

Massive parallel computer Blue Waters (UIUC): ~200,000 CPUs



Time scale: ~ 0.1-100 μsLength scale: 10K - 1,000M atoms or (< 70 nm)³</td>Time resolution: 2 fsSpacial resolution: 0.1 AAtoms move according to classical mechanics

(F= ma) Interactions between atoms are defined by the molecular force field



## What is Molecular Dynamics?

$$m_i \frac{d^2 \vec{r_i}}{dt^2} = \vec{F_i} = -\vec{\nabla} U(\vec{R})$$

![](_page_3_Picture_2.jpeg)

Energy function has two parts:

- chemical bond interactions
- non-bonded interactions

![](_page_4_Picture_0.jpeg)

![](_page_4_Picture_1.jpeg)

**Impropers:** Any *planar* group of four atoms forms an improper.

$$m_i \frac{d^2 \vec{r_i}}{dt^2} = \vec{F_i} = -\vec{\nabla} U(\vec{R})$$

The MD method models atoms with point particles interacting through classical potentials

$$U = \sum_{\text{bonded}} \left\{ \begin{array}{l} k(r_{ij} - r_0)^2 \\ + k_{\theta}(\theta - \theta_0)^2 \\ + k(1 + \cos(n\psi + \phi)) \right\} \\ + \sum_{i>j} \left\{ \begin{array}{l} -U_{\min} \left[ \left(\frac{R_{\min}}{r_{ij}}\right)^{12} - 2\left(\frac{R_{\min}}{r_{ij}}\right)^6 \right] \\ + \frac{Cq_iq_j}{\epsilon_0 r_{ij}} \right\} \end{array} \right\}$$

![](_page_5_Picture_3.jpeg)

electrostatic

## MD force field: a more approach

![](_page_6_Picture_1.jpeg)

Bonding cannot change(!)

## To run MD you'll need...

Computer (multi-core/GPU or cluster)

MD code (NAMD, Gromacs, Charmm, ...)

Input coordinates (typically .pdb): specifies initial state of the system

Protein structure file (typically .psf): specifies chemical bond information

Parameter file: provides atom-type specific values to interacting potentials

Configuration file (.namd or similar): run-type parameter, temperature, etc

Constraints or other simulation-specific files (typically .pdb)

Output: MD trajectory (.dcd file): describes how coordinates change in time Analysis tools (VMD, python, etc.

## What is MD good for?

Minimum requirements:

- Well-defined question
- Atomic-detail structure (or disordered state)
- Minimum chemistry
- Volume of 60 x 60 x 60 nm<sup>3</sup> or less
- Processes taking less than 100 microseconds

Typical questions:

- What is the equilibrium structure in physiological environment?
- What is the free-energy cost of going from A to B?
- What is the path from A and B?
- How does the structure respond to external force or field?
- What is going on in my experiment?

#### **All-Atom Molecular Dynamics Simulation of DNA Condensates**

![](_page_9_Picture_1.jpeg)

Add 64 DNA helices

Add polyamine cations (+4)

Add 150 mM NaCl

Add explicit water

Apply a half-**harmonic wall potential** only to DNA Solve the equation of motion (F= ma) under **periodic boundary condition** in all directions

### **CUFIX Improves Simulations of DNA Condensates**

http://bionano.physics.illinois.edu/CUFIX

![](_page_10_Figure_2.jpeg)

## From caDNAno to all-atom

![](_page_11_Picture_1.jpeg)

#### Cadnano design

![](_page_11_Figure_3.jpeg)

SM. Douglas,..., WM. Shih, Nucleic Acids Res., 2009

## **Seladastrol sture**ture

#### caDNAno2pdb

![](_page_11_Figure_7.jpeg)

- \* CHARMM36 force field
- \* Explicit water
- \* [MgCl<sub>2</sub>] ~ 10 mM
- \* NAMD
- \* 1 to 3M atoms
- \* 500 to 1,000 CPUs

![](_page_12_Figure_0.jpeg)

# Structural fluctuations reveal local mechanical properties

![](_page_13_Figure_1.jpeg)

Yoo and Aksimentiev, PNAS 110:20099 (2013)

![](_page_13_Figure_3.jpeg)

Simulations predict higher rigidity for honeycomb-lattice design

#### A Practical Guide to DNA Origami Simulations Using NAMD

— Walk through the protocol for all-atom simulations of DNA origami using the NAMD package

![](_page_14_Figure_2.jpeg)

All-atom structure in a MgCl<sub>2</sub> solution

![](_page_15_Picture_0.jpeg)

## Tiled DNA nanostructures

![](_page_16_Figure_1.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_16_Picture_3.jpeg)

![](_page_16_Picture_4.jpeg)

Identical nucleotide sequence in both structures

![](_page_16_Figure_6.jpeg)

![](_page_16_Figure_7.jpeg)

Slone et al., New J. Phys. 18:055012 (2016)

nanohub.org/resources/legogen

### ENRG MD tool kit : a universal all-atom structure

#### converter

![](_page_17_Figure_2.jpeg)

![](_page_18_Picture_1.jpeg)

High-resolution cryoelectron microscop

![](_page_18_Picture_3.jpeg)

Petascale computer system

![](_page_19_Figure_1.jpeg)

![](_page_20_Picture_1.jpeg)

![](_page_21_Picture_1.jpeg)

#### Pseudo-atomic model

# MD simulation of the cryo-EM object starting from a caDNAno design

![](_page_22_Figure_1.jpeg)

7M atom solvated model ~200 ns MD trajectory

# MD simulation of the cryo-EM object starting from a caDNAno design

![](_page_23_Picture_1.jpeg)

Bai et al, PNAS 109:20012 (2012)

![](_page_23_Picture_3.jpeg)

7M atom solvated model ~200 ns MD trajectory

# MD simulation of the cryo-EM object starting from a caDNAno design

![](_page_24_Figure_1.jpeg)

Bai et al, PNAS 109:20012 (2012)

![](_page_24_Picture_3.jpeg)

7M atom solvated model ~200 ns MD trajectory

### Electron density maps

![](_page_25_Picture_1.jpeg)

Cryo-EM reconstruction

![](_page_25_Picture_3.jpeg)

All-atom MD simulation

### Comparison with experiment

Maffeo, Yoo & Aksimentiev, NAR 44: 3013 (2016)

![](_page_26_Picture_2.jpeg)

EM density psuedo-atomic model

simulation

# Making images and animations of DNA nanostructures with VMD

![](_page_27_Picture_1.jpeg)

## Elastic network of restraints guided MD (ENRG MD) ~10,000 times more efficient

![](_page_28_Picture_1.jpeg)

Solvent replaced with elastic network

Maffeo, Yoo & Aksimentiev, NAR 44: 3013

(2016)

![](_page_28_Picture_5.jpeg)

![](_page_28_Figure_6.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_30_Figure_0.jpeg)

#### Multi-resolution simulation of colf combled DVA nanostr

![](_page_31_Picture_1.jpeg)

## **DNA membrane channels**

![](_page_32_Picture_1.jpeg)

Dr. Ulrich F. Keyser Cambridge, UK

![](_page_32_Picture_3.jpeg)

## **DNA Ion Channels**

![](_page_33_Figure_1.jpeg)

![](_page_33_Picture_2.jpeg)

Langecker, M. *et al.*, *Science*: 338, 932-936.

![](_page_33_Figure_4.jpeg)

![](_page_34_Figure_1.jpeg)

Göpfrich, Kerstin *et al.*, *Nano Lett.*, 2015, 15(5), 3134–3138. (Right) design from Burns, Jonathan R. *et al.*, *Nat. Nanotechnol.*, 2016, 11, 152–156.

![](_page_35_Figure_1.jpeg)

Göpfrich, Kerstin *et al.*, *Nano Lett.*, 2015, 15(5), 3134–3138.

![](_page_36_Figure_1.jpeg)

![](_page_37_Figure_1.jpeg)

## Chemistry matters

![](_page_38_Figure_1.jpeg)

## Small conductance DNA channel

![](_page_39_Figure_1.jpeg)

Goepfrich, et al., Nano Lett 16: 4665 (2016)

![](_page_40_Picture_0.jpeg)

### All-atom MD simulation of lipid-DNA interface

![](_page_40_Picture_2.jpeg)

![](_page_40_Picture_3.jpeg)

Lipid molecules can translocate to the other leaflet through the toroidal pore made by DNA

Nature Communications 9:2426 (2018)

## Lipid translocation through toroidal pores is very common and very fast

![](_page_41_Picture_1.jpeg)

#### Lipid translocation in cells is catalyzed by enzyme

![](_page_42_Figure_1.jpeg)

![](_page_42_Figure_2.jpeg)

Lipid molecules are asymmetricall distributed in the cell membrane.

apoptosis or thrombin formation:

![](_page_42_Picture_5.jpeg)

$$\frac{F(t)}{F(0)} = x_{in}e^{-k_S t} + (1 - x_{in})e^{-k_Q t}$$

*x<sub>in</sub>*: ratio of labeled lipid
in the inner leaflet *k<sub>q</sub>* and *k<sub>s</sub>*: rate constant for
quenching and scrambling

Brunner et al, Nature 516, 207-212, 2014

## Experimental verification

![](_page_43_Picture_1.jpeg)

Alex Ohmann

![](_page_43_Figure_3.jpeg)

![](_page_44_Picture_0.jpeg)

## Experimental verification

A

![](_page_44_Figure_2.jpeg)

Ohmann, Li, ... Ulrich F. Keyser, Aksimentiev, Nature Communications 9:2426 (2018)

## Works in human cells

Human cells contain PS lipids at the inner membrane

Annexin V binds specifically to PS lipids

DNA scramblase Annexin V Merged Brightfield

Breast cancer cells from the cell line MDA-MB-231 **Positive control**: apoptosis-inducing microbial alkaloid staurosporine **Negative control**: DNA folding buffer

Nature Communications 9:2426 (2018)

Scale bar is  $20 \ \mu m$ 

## **Tutorials overview**

#### Design

#### Simulations

Cadnano (today)

![](_page_46_Picture_4.jpeg)

#### Cadnano toolkit (tomorrow)

![](_page_46_Picture_6.jpeg)

All-atom with NAMD (today)

![](_page_46_Picture_8.jpeg)

![](_page_46_Picture_9.jpeg)

![](_page_46_Picture_10.jpeg)

Coarse-grained with ARBD (tomorrow)

![](_page_46_Picture_12.jpeg)

![](_page_47_Picture_0.jpeg)

![](_page_47_Picture_1.jpeg)

![](_page_47_Picture_2.jpeg)

![](_page_47_Picture_3.jpeg)

![](_page_47_Picture_4.jpeg)

![](_page_47_Picture_5.jpeg)

Jejoong Yoo

![](_page_47_Picture_7.jpeg)

Chen-Yu Li

![](_page_47_Picture_9.jpeg)

TeraGrid<sup>™</sup>

![](_page_47_Picture_11.jpeg)

### Acknowledgements

![](_page_47_Picture_13.jpeg)

![](_page_47_Picture_14.jpeg)

NANOPORE. Technologies

![](_page_47_Picture_16.jpeg)

US Army Corps of Engineers. Construction Engineering Research Laboratory

![](_page_47_Picture_18.jpeg)