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pH Effects in Biochemistry

Casey, et al Nat Rev Mol Cell Biol, 2010
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Constant pH and the semi-grand canonical ensemble

» Conventional MD samples a canonical ensemble:
Q- / dx e BUM)

» Constant-pH MD samples a semi-grand canonical ensemble:

Z(pH) = > Qa10™™PH

AeS

The added interaction is between the number of protons, ny, and a
pH bath. X is a new variable designating the protonation state.



Networks of protonation states
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Networks of protonation states
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pH as a thermodynamic force

» Classical MD utilizes mechanical forces

F = —-VU|[x(t)]
» pH may be regarded as a thermodynamic force
oH = — 1 Odln=
In10 Ony

Mechanical forces — deterministic/stochastic dynamics
Thermodynamic forces — probabilistic “dynamics”

P)‘(pH) X Q)‘].Ofn)‘pH



How do we define nodes in the network?

Consider a system with m sites:

A= {)\1,)\2; . . -)\sa)\s—{—l; .. )\m}
N—— N——




Protonation state probabilities/populations

_ Yoaes J dx A(x, X)e AU 10 mapH
a =(pH)
Py, = (As)pn  — the probability that site s is occupied

S

<A(X, )‘)>PH

There are two kinds of terms in the summation, As = 0/1
=(pH) = Zo(pH) + Z1(pH)10~P"
thus,

Oahgpt = —1eH1O L
PPR T Zo(pH) 4 Za(pH)10-PH g %NPH




Connection to thermodynamics

1

- Zo(PH) 1 pH
1—1—51(13/'/)10[)

compares to the Henderson-Hasselbalch equation such that

<>\5>pH

_ g 20(PH)
pKa(pH) = — 1 &= (ph)’

except that now pK,(pH) is pH dependent. One often uses the
approximation:

pKa(pH) ~ K + (1= ) (pH — pK?),

where n is the Hill coefficient and pK;ga) is the “apparent” pKi.



Networks of protonation states
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We can now see that the fraction of simulation time spent in a

given protonation state is directly impacted by the difference of the
pK, of a residue/site and the pH.



That's great — how do we sample the states?

1. Sample the configuration space of a given state
(i.e., sample x for a given Q)

2. Change between protonation states according to the number
of protons and the given pH
(i.e., sample X and choose a new Q)

This may be regarded as a Gibbs sampling, whereby the
configuration and state are sampled in an alternating fashion.



A problem! Environmental response

» (De)Protonation is a significant electrostatic event.
» Non-trivial reorganization of solvent, possibly solute.

» Naive sudden changes in protonation are likely to cause high
energy configurations and/or steric clashes.



Possible solutions to the solvent clash problem
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“Fast” alchemical growth

4

alchemical growth 5

» Swap the protonation state by using time-dependent
interactions.

» Gradually stronger interactions will induce solvent response.

» Clashes are avoided by using the natural dynamics of the
model.



The neMD/MC constant pH paradigm
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» Drive alchemical growth with nonequilibrium work

» Accept/reject with a generalized Metropolis criterion

Stern J Chem Phys, 2007; Chen & Roux J Chem Theory Comput, 2015;
Radak, et al. J Chem Theory Comput, 2017



The neMD/MC constant pH paradigm

A=2/3

neMD alchemical
growth

removal of auxiliary
coordinates

MC sample of auxiliary
coordinates

» Drive alchemical growth with nonequilibrium work

» Accept/reject with a generalized Metropolis criterion

Stern J Chem Phys, 2007; Chen & Roux J Chem Theory Comput, 2015;
Radak, et al. J Chem Theory Comput, 2017



Beyond Gibbs sampling: Hybrid MD and neMD/MC

We now alternate conventional sampling with MD (x) and
Metropolis Monte Carlo sampling (x and X):

p(X, N)T(x, A —= X', X)) = p(x', N)T(x', X — x,A)

such that the neMD/MC transition probability is:

/ /
T(x,A—=x'"A') = min {1, P, A )]
p(x, A)

~ min [1, efﬁwlo*A"P“}

(If you'd like, MD uses the probability T(x — x’) = 1.)



Important considerations

» How long should | sample the equilibrium stage?

» How long should | sample the nonequilibrium stage?
(the “switch time,” Tewitch)

» Rejecting a nonequilibrum trajectory is expensive,
how can we avoid doing that so much?



The two-step “inherent” pK, algorithm

T = X\ N) = TON = M) TE(x = x'|A = X)

TOA = X) = min [1,10°K" (AN )=AnpH

» neMD/MC can be split into two parts

1. T® — only depends on A and the pH — CHEAP
2. T() — depends on the switch (W) — COSTLY

Chen & Roux J Chem Theory Comput, 2015; Radak, et al. J Chem Theory Comput, 2017



The two-step “inherent” pK, algorithm

T = X\ N) = TON = M) TE(x = x'|A = X)

TOA = X) = min [1,10°K" (AN )=AnpH
» neMD/MC can be split into two parts
1. T® — only depends on A and the pH — CHEAP
2. T() — depends on the switch (W) — COSTLY

» Effort is shifted by estimating a parameter, pKéi)

» Optimal efficiency achieved for exact pKj,

Chen & Roux J Chem Theory Comput, 2015; Radak, et al. J Chem Theory Comput, 2017



The two-step “inherent” pK, algorithm

T(x, A= x,\XN)=TON = XN)TE (x = x'|]A = X)
TOA = X) = min [1,10°K" (AN )=AnpH

» neMD/MC can be split into two parts

1. T® — only depends on A and the pH — CHEAP
2. T() — depends on the switch (W) — COSTLY

» Effort is shifted by estimating a parameter, pKéi)
» Optimal efficiency achieved for exact pKj,

» Dramatically improved performance on wide pH ranges!

Chen & Roux J Chem Theory Comput, 2015; Radak, et al. J Chem Theory Comput, 2017



A graphical view of the inherent pKj, algorithm
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» It's silly to try to add/remove protons to/from acidic/basic
residues at high/low pH

» Transitions are proposed in proportion to the estimated
population.



What about after we've proposed a switch?

> A short switch will not change much and likely be rejected.
» A long switch is expensive (limit of a single switch — BAD).

> Since the switch success depends on the work, let's analyze
that.



Work and force fluctuations — a typical neMD/MC cycle
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Theoretical and Empirical Performance Analysis
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High acceptance is good, but not naively optimizable

The transition rate can be optimized within constraints

Radak & Roux J Chem Phys, 2017; Radak, et al. J Chem Theory Comput, 2017



Main take-aways for the algorithm

» Estimating/updating the inherent pKj is very helpful for
efficiency.

» The best choice of switch time depends on the particular
dynamics — values near 10-20 ps are reasonable. Look for
acceptance rates ~20%.

» The length of each cycle depends largely on the number of
residues. Values near 0.1-1 ps should be reasonable.



NAMD Constant pH: Features and Keywords

v

Flexible Tcl interface source lib/namdcph/namdcph.tcl

v

PSF build procedure is unchanged (automated psfgen)

v

Implemented with PME and full electrostatics

v

No GPU yet - depends on alchemy

» Companion analysis script cphanalyze

parameters par_cph36_prot.prm
cphConfigFile conf_cph36_prot.json
topology top_cph36_prot.rtf
pH 7.0

cphNumstepsPerSwitch 7500 ;# run 7500 steps per switch
cphRun 500 10 ;# run 10 cycles of 500 MD steps



CHARMMS36: Reference amino acids are well-reproduced

CYS: 9.54 +/-0.03

» Adjustments to force field
enforce empirical reference
values

0.8 |
0.6 |

04 | HIS-8: 6.53 +/-0.13

| HISe: 7.03 4+ 0.12

> Implicitly model solvated
proton and bond energy
effects

protonated fraction/state population

0.2}

0.0

» Bonus:

accurate reproduction of
>:\ >:\ tautomeric ratios!



Staph nuclease (SNase) - A constant pH benchmark




Benchmarking of SNase pK, values
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» Good correlation with
measured values for
carboxylates

» Bonus:
estimates for HIS

residue this work

8 6.58 (0.29)

HIS 151 519 (0.16)




Output and Analysis
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» Normal usage requires
multiple pH values
(“titration curves")

» cphanalyze can...

» boost performance with
WHAM

» extract pK, from Hill
fitting



A Brief WHAM Primer

Consider k =1,..., M pH values with N, samples per value
(N = Z,’g’:l Ni) and site occupancies A; at each timestep.

PH)X )\t

IIMZ

M -1

Zﬁ F(pHi)~f (PH) 1 g (PHi—pH)e
N

k=1

» Energy difference only depends on the proton count, n;
» Can compute probability for any indicator, x(A¢)

» Permits consistent interpolation /extrapolation



Output and Analysis

» New output: cphlog Example cphlog:

#pH 4.0
» New Checkpoint files: #PROA:129:ASP PROA:141:GLU PROA:142:HIS
PROA:145:ASP PROA:150:LYS PROA:161:GLU
psf/pdb, cphrst PROA:162:ASP
1001011001110000
2001011001110000
3000011001110000
parameters par_cph36_prot.prm 4000011001111000
cphConfigFile conf_cph36_prot.json
topology top_cph36_prot.rtf
structure $o0ldOutputName.psf

coordinates $o0ldOutputName.pdb
cphRestartFile $oldOutputName.cphrst

cphRun 500 10



Membranes... things get weird

» A fluctuating net charge is
tricky with PME.

E=E(x)+0 (%)

» Membrane systems have a lower
than usual mean dielectric and
smaller aqueous volume.

» Multiple options to correct this,
but all require care.




Membranes... things get weird
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» Significant shifts due to low dielectric region.

» Effective pH changes by ~2 units!



Other cautions: WHAM versus “naive” data analysis

» WHAM is effectively a Bayesian framework with prior
assumption that
1. the data is i.i.d.
2. the data is Boltzmann distributed

» This may be misleading when convergence is poor!

1.0
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08 D129 2.85+/-0.11 1.93 +/- 0.30
D145 351 +/-0.03 1.06 +/- 0.05
06 | D162 1.99 +/-0.30 0.75 +/-0.12
E141 5.08 +/-0.07 0.72 +/-0.07
0.4 | E161 4.14 +/-0.05 0.92 +/- 0.06
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Other cautions: WHAM versus “naive” data analysis

» WHAM is effectively a Bayesian framework with prior
assumption that
1. the data is i.i.d.
2. the data is Boltzmann distributed

» This may be misleading when convergence is poor!

1.0
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08 D129 2.88 +/-0.03 6.33 +/- 1.64
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06 | D162 1.61+/-2.27 0.64 +/- 0.86
E141 510+/-019 0.74+/-0.18
04} E161 4.05+/-0.39 1.04 +/-0.65
- . E164 4.93 +/-0.68 1.00 +-0.79
c 02} " H142 371 +/-0.85 0.56 +/- 0.46
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o
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Concluding Remarks/Future Directions

1. You can run constant-pH MD today on globular protein
systems.
> Consider using for systems with large numbers of (unknown) states

> Can also use this as an alternative for structure based assignment

2. Things we are working on:
> Performance improvements in alchemy — CUDA support
Better support for membrane systems
Better visualization support in VMD
More automated inherent pKa selection

vV vYyy

pH replica exchange

3. Things we would like to work on:

> psfgen improvements — support for Drude
> Support for other force fields

» More general small molecule support



