Geometrical free-energy methods: strengths and limitations

Giacomo Fiorin, Fabrizio Marinelli Temple Materials Institute, Philadelphia, PA National Heart, Lung and Blood Institute, Bethesda, MD

Enhanced sampling and Free-energy Workshop Urbana-Champaign, September 25-29 2017

Different methods to compute FEs

Thermodynamic integration (Kirkwood, 1935):

$$\Delta F = \int_{\lambda}^{\lambda} = 0 \frac{dF}{d\lambda} d\lambda = \int_{\lambda}^{\lambda} = 0 \left\langle \frac{dU}{d\lambda} \right\rangle d\lambda$$

Free-energy perturbation (Zwanzig, 1954) $e^{-\Delta F/kT} = \langle e^{-(U_{\lambda=1} - U_{\lambda=0})/kT} \rangle$

Probability-based (umb. samp., MBAR, metadyn...) $e^{(F_1 - F_0)/kT} = (\sum_{\lambda=1} P_i) / (\sum_{\lambda=0} P_j)$ Jarzynski's identity (Jarzynski, 1997, used with SMD) $e^{-(F_1 - F_0)/kT} = \left\langle e^{-W_0 \to 1/kT} \right\rangle_{non-eq}$

Thermodynamic integration

Choose a "reaction coordinate" λ which goes from our chosen initial state ($\lambda = 0$) to the final state ($\lambda = 1$) (Kirkwood, 1935).

$$\Delta F = \int_{\lambda}^{\lambda} = 1 \frac{dF}{d\lambda} d\lambda$$

Now how to obtain the derivative of the free energy $dF/d\lambda$?

Thermodynamic integration

$$\begin{split} \Delta F &= \int_{\lambda}^{\lambda} = 0 \frac{dF}{d\lambda} d\lambda = \int_{0}^{1} \frac{d}{d\lambda} (-kT \times \ln(Z)) d\lambda = \\ &= \int_{0}^{1} -kT \times \frac{1}{Z} \frac{d}{d\lambda} (\sum_{i} e^{-Ei/kT}) d\lambda = \\ &= \int_{0}^{1} -kT \times \frac{1}{Z} \left(\sum_{i} e^{-Ei/kT} \frac{-1}{kT} \frac{dE_{i}}{d\lambda} \right) d\lambda = \\ &= \int_{0}^{1} \frac{1}{Z} \left(\sum_{i} e^{-Ei/kT} \frac{dE_{i}}{d\lambda} \right) d\lambda = \int_{\lambda}^{\lambda} = 0 \begin{pmatrix} \frac{dE}{d\lambda} \end{pmatrix} d\lambda \end{split}$$

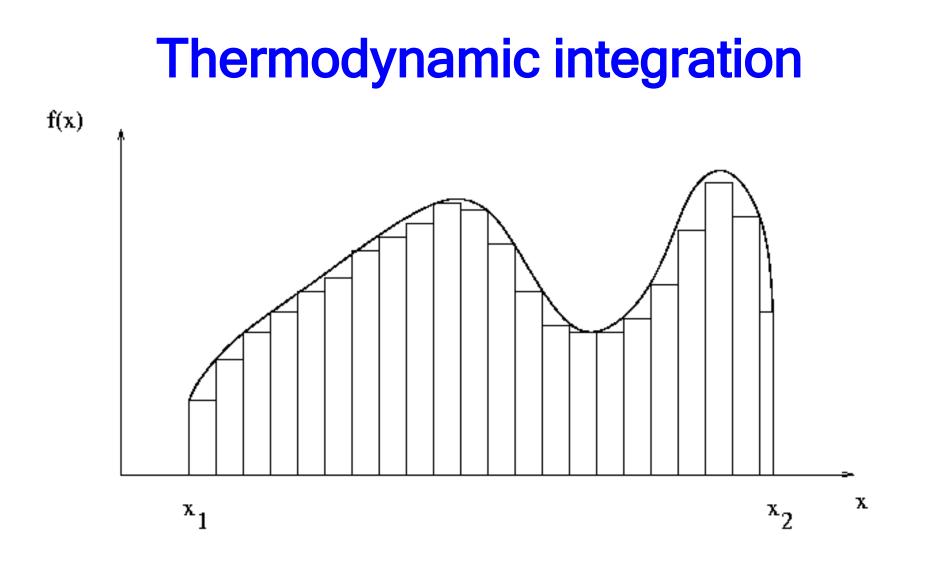
Thermodynamic integration

Choose a "reaction coordinate" λ which goes from our chosen initial state ($\lambda = 0$) to the final state ($\lambda = 1$) (Kirkwood, 1935).

$$\Delta F = \int_{\lambda}^{\lambda} = 0 \frac{dF}{d\lambda} d\lambda = \int_{\lambda}^{\lambda} = 0 \left\langle \frac{dU}{d\lambda} \right\rangle d\lambda$$

where $f_{\lambda} = \langle dU/d\lambda \rangle$ is the *"thermodynamic force"* acting on the variable λ .

Note that the integral is numeric, i.e. a sum.

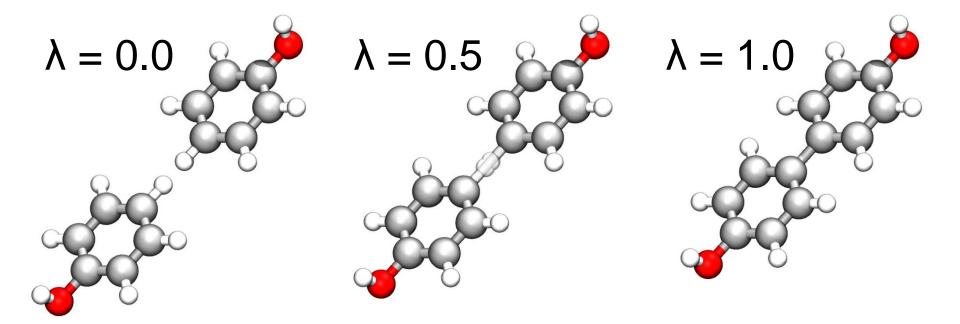


Two approaches for TI

- Constrained approach: for each λ = 0, 0.01, 0.02, ... carry out a simulation at constant λ-value, calculate f_λ = (dU/dλ), integrate it.
- Unconstrained approach: same as above, but letting the system *diffuse freely across λ-values while collecting* (dU/dλ) *on a grid*, integrate it.

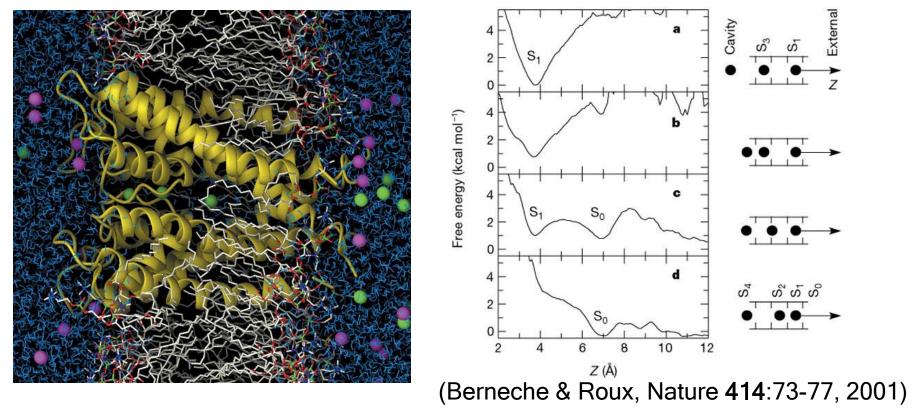
When λ is easy to choose (1)

Alchemical transformations: we simulate two systems, A and B, with a combined energy function: $U(\lambda) = U_A \times (1-\lambda) + U_B \times \lambda$

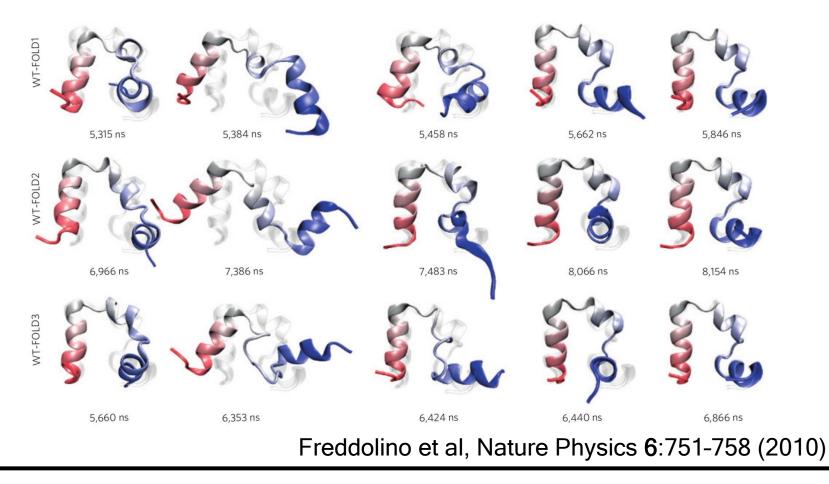


When λ is easy to choose (2)

Permeation through a channel: set λ equal to the trans-membrane coordinate.



When λ is NOT easy to choose Protein folding: good luck...



Inverse gradients in TI

If we write the total derivative $f_{\lambda} = \langle dU/d\lambda \rangle$ in terms of Cartesian forces:

$$\Delta \mathsf{F} = \int \left\langle \frac{\mathsf{d}\mathsf{U}}{\mathsf{d}\lambda} \right\rangle \mathsf{d}\lambda = \int \left\langle \frac{\partial\mathsf{U}}{\partial\mathbf{x}} \frac{\partial\mathbf{x}}{\partial\lambda} \right\rangle \mathsf{d}\lambda$$

Two issues with the "inverse gradient" $dx/d\lambda$:

- 1) It is not unique: its Cartesian components that are orthogonal to $\partial U/\partial x$ have no effect.
- 2) It is rarely constant with λ , because $\lambda(\mathbf{x})$ is rarely a linear function: we need to calculate it.

How to use the inverse gradients?

The constrained integral:

$$\int \left\langle \frac{\partial U}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \lambda} \right\rangle d\lambda = \int \left(\int_{\mathbf{X} \in \lambda} \frac{\partial U}{\partial \mathbf{x}} \frac{\partial \mathbf{x}}{\partial \lambda} p(\mathbf{x}) d\mathbf{x} \right) d\lambda$$

can be simplified by changing coordinates from \mathbf{x} to (λ, \mathbf{q}) :

$$\int \left(\frac{\partial U}{\partial \lambda} + \frac{\partial U}{\partial \mathbf{q}} \frac{\partial \mathbf{q}}{\partial \lambda} \right) d\lambda d\mathbf{q}$$

which is easiest if U is a simple expression of λ (e.g. if λ is the radial distance).

Jacobian term in TI

Any change in coordinates for a multidimensional integral comes with a Jacobian term. See Carter et al (1989):

$$\left\langle \frac{\mathrm{dU}}{\mathrm{d\lambda}} \right\rangle = \frac{\partial \mathrm{U}}{\partial \lambda} - \mathbf{kT} \frac{\partial \mathrm{ln} |\mathbf{J}(\lambda, \mathbf{q})|}{\partial \lambda}$$

where the second term is purely geometric (does not depend on the internal energy function U).

Jacobian of radial distance $\left\langle \frac{dU}{d\rho} \right\rangle = \left\langle \frac{\partial U}{\partial \rho} \right\rangle - kT \frac{\partial \ln |J(\rho, \mathbf{q})|}{\partial \rho} =$ $= \left\langle \frac{\partial U}{\partial \rho} \right\rangle - kT \frac{\partial \ln (\rho^2 \sin(\theta))}{\partial \rho} = \left\langle \frac{\partial U}{\partial \rho} \right\rangle - kT \frac{2}{\rho}$

If we integrate it from $\rho = 0$ to $\rho = r$, the Jacobian term will give $-2kT \times ln(r)$.

We shouldn't forget it when computing binding free energies by a distance variable.

Wait though: what about g(r)?

We had learned from textbooks that:

 $F(r) = -kT \times ln(g(r))$

and because $g(\infty) \rightarrow 1$, $F(\infty) \rightarrow 0$.

Note 1: g(r) is usually computed from an *infinite number of ion pairs*. For just one specific pair, the PMF does go as -2kT×In(r).

Note 2: *it's not just a definition problem*, as you will notice if you try calculating the PMF of a RMSD variable near RMSD = 0.

Different methods to measure FEs

Thermodynamic integration (Kirkwood, 1935):

$$\Delta F = \int_{\lambda}^{\lambda} = 0 \frac{dF}{d\lambda} d\lambda = \int_{\lambda}^{\lambda} = 0 \left\langle \frac{dU}{d\lambda} \right\rangle d\lambda$$

Free-energy perturbation (Zwanzig, 1954) $e^{-\Delta F/kT} = \langle e^{-(U_{\lambda}=1} - U_{\lambda=0})/kT \rangle$

Probability-based (umb. samp., MBAR, metadyn...) $e^{(F_1 - F_0)/kT} = (\sum_{\lambda=1} P_i) / (\sum_{\lambda=0} P_j)$ Jarzynski's identity (Jarzynski, 1997, used with SMD) $e^{-(F_1 - F_0)/kT} = \left\langle e^{-W_0 \to 1/kT} \right\rangle_{non-eq}$

Free energy perturbation (FEP)

Calculating $dU/d\lambda$ on hundreds of points may be difficult, or expensive.

Zwanzig equation (finite difference):

$$e^{-\Delta F/kT} = \left\langle e^{-(U_B - U_A)/kT} \right\rangle$$

and now where we calculate $\langle \cdot \rangle$ is crucial. By convention we use a simulation of "A":

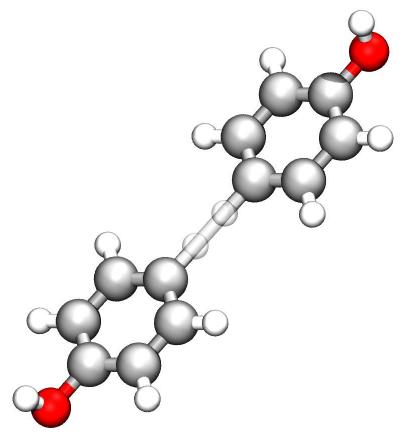
$$e^{-\Delta F/kT} = \left\langle e^{-(U_B - U_A)/kT} \right\rangle_A$$

(Alchemical) FEP

Calculate both U_A and U_B , but only move using forces from U_A (or one of the states anyway). At $\lambda = 0$ (pure "A") U_B

May be quite large, but it is only a problem of statistical convergence.

$$e^{-\Delta F/kT} = \left\langle e^{-(U_B - U_A)/kT} \right\rangle_A$$



Different methods to measure FEs

Thermodynamic integration (Kirkwood, 1935):

$$\Delta F = \int_{\lambda}^{\lambda} = 0 \frac{dF}{d\lambda} d\lambda = \int_{\lambda}^{\lambda} = 0 \left\langle \frac{dU}{d\lambda} \right\rangle d\lambda$$

Free-energy perturbation (Zwanzig, 1954) $e^{-\Delta F/kT} = \langle e^{-(U_{\lambda}=1} - U_{\lambda}=0)/kT \rangle$

⇒ Probability-based (umb. samp., MBAR, metadyn...) $e^{(F_1 - F_0)/kT} = (\sum_{\lambda=1} P_i) / (\sum_{\lambda=0} P_j)$ Jarzynski's identity (Jarzynski, 1997, used with SMD) $e^{-(F_1 - F_0)/kT} = \langle e^{-W_0 \rightarrow 1}/kT \rangle_{non-eq}$

Probability based methods

Canonical ensemble: for any microstate v, $p(v) = e^{-E_v/kT} / \sum_i e^{-E_i/kT} = e^{-E_v/kT} / Z,$ where $Z = \sum_i e^{-E_i/kT} = e^{-F/kT}$

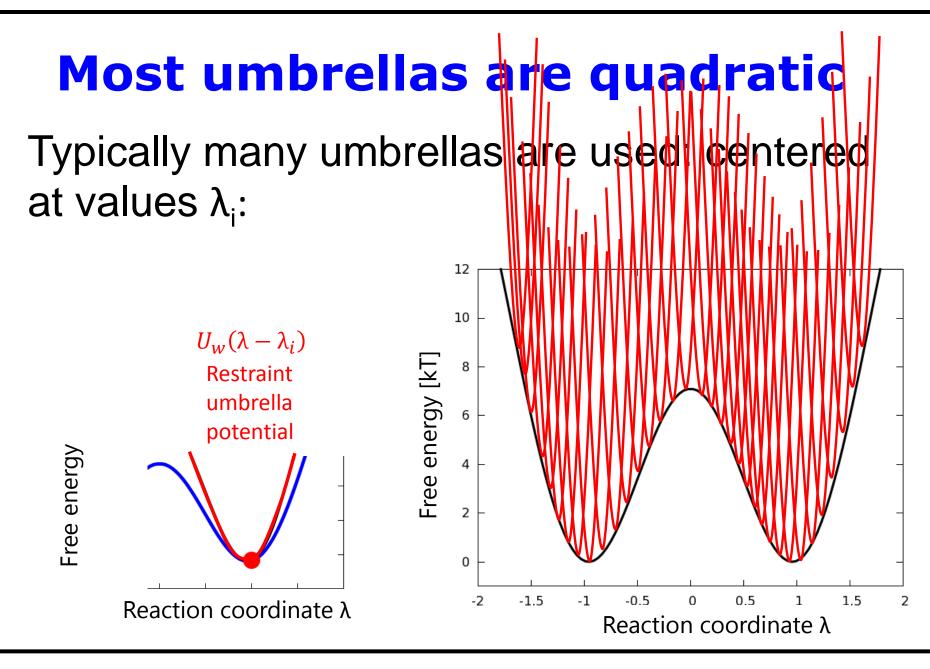
Considering only states at $\lambda = 0$ or $\lambda = 1$: $e^{-(F_1 - F_0)/kT} = Z_1/Z_0 =$ $= (Z \times \sum_{[\lambda=1]} p(i)) / (Z \times \sum_{[\lambda=0]} p(j)) =$ $= (\# \text{ of times } \lambda = 1) / (\# \text{ of times } \lambda = 0)$

Umbrella sampling

Some configurations (i.e. λ -values) are poorly sampled. Torrie and Valleau, 1977: *add a biasing function w*(λ) to sample them more often.

Example: if U(
$$\lambda$$
=1) – U(λ =0) ≈ 8 kcal/mol
 \rightarrow p(λ =1) ≈ 10⁻⁶, p(λ =0) ≈ 1

If we add the biasing potential: $U_{w}(\lambda) = -8 \text{ kcal/mol} + (16 \text{ kcal/mol}) \times (\lambda - 1)^{2},$ $w(\lambda = 1) = 10^{6}, w(\lambda = 0) = 10^{-6},$ we now get $p(\lambda = 1) \approx 1, p(\lambda = 0) \approx 10^{-6}$



Unbiasing umbrella sampling

A set of biasing functions $w(\lambda)$ can sample all λ -values, but the equilibrium is changed. *Need to unbias all measurements* to get the canonical distribution back.

$$e^{(F_1 - F_0)/kT} = (\sum_{[\lambda=1]} p(i)) / (\sum_{[\lambda=0]} p(j)) =$$
$$= (\sum_{[\lambda=1]} p(i) \times \frac{W_i}{W_i}) / (\sum_{[\lambda=0]} p(j)) \approx$$
$$\approx (1/w)[w-biased]$$

Free energy from U.S.

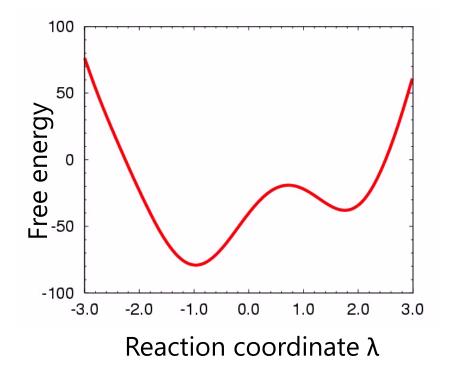
Because you'll likely need different w(λ) for different regions of λ , unbiasing and merging all biased histograms n_w(λ) can be laborious.

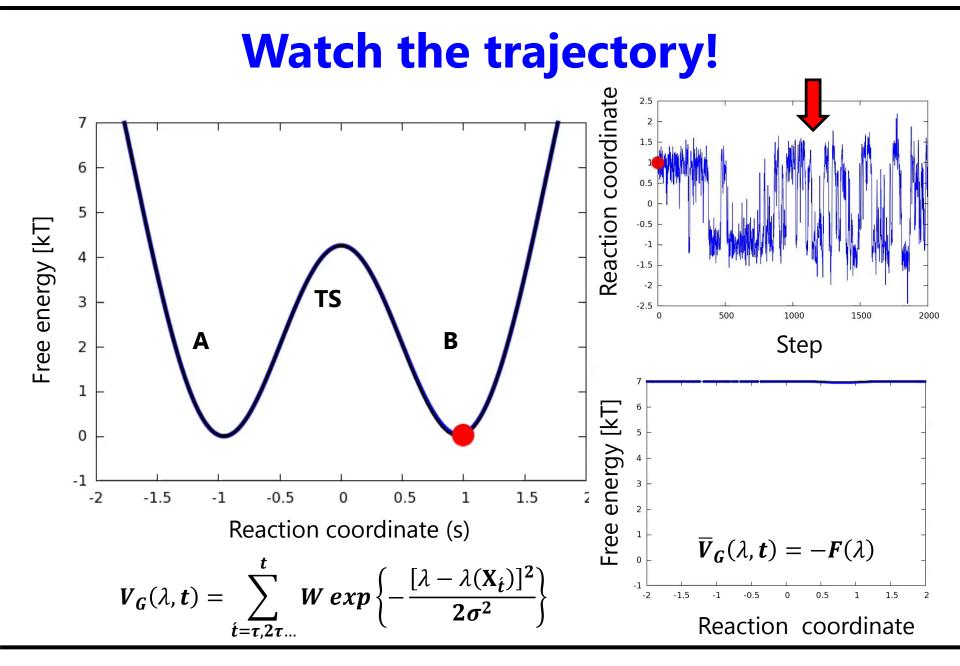
- Weighted-histogram analysis method (WHAM) (Kumar et al, 1992): combine histograms to calculate p(λ) and its (under)estimated error. (Roux, 1995)
- (Bayesian) bootstrap (Rubin, 1981): calculate a theoretical distribution of p(λ) that is *compatible* with the set of histograms.

Adaptive methods: metadynamics

- Local elevation (Huber et al, 1994)
- Conformational flooding (Grubmüller, 1995)
- Metadynamics (Laio & Parrinello, 2002)

A repulsive potential (e.g. a Gaussian) raises the energy of states already visited, forcing the exploration of new ones.





Free energies from metadynamics

- The finite Gaussian functions create noise even after convergence. Practical approach: use the average of the instantaneous PMFs (but only after convergence).
- Well-tempered MTD artificially speeds up convergence: ensure that you know the largest barrier and use it accordingly.
- Multiple-walkers and replica-exchange MTD always improve sampling: ensure that replicas do travel through phase space.

Different methods to measure FEs

Thermodynamic integration (Kirkwood, 1935):

$$\Delta F = \int_{\lambda}^{\lambda} = 0 \frac{dF}{d\lambda} d\lambda = \int_{\lambda}^{\lambda} = 0 \left\langle \frac{dU}{d\lambda} \right\rangle d\lambda$$

Free-energy perturbation (Zwanzig, 1954) $e^{-\Delta F/kT} = \langle e^{-(U_{\lambda=1} - U_{\lambda=0})/kT} \rangle$

Probability-based (umb. samp., MBAR, metadyn...) $e^{(F_1 - F_0)/kT} = (\sum_{[\lambda=1]} P_i) / (\sum_{[\lambda=0]} P_j)$ → Jarzynski's identity (Jarzynski, 1997, used with SMD) $e^{-(F_1 - F_0)/kT} = \langle e^{-W_0 \to 1}/kT \rangle_{non-eq}$

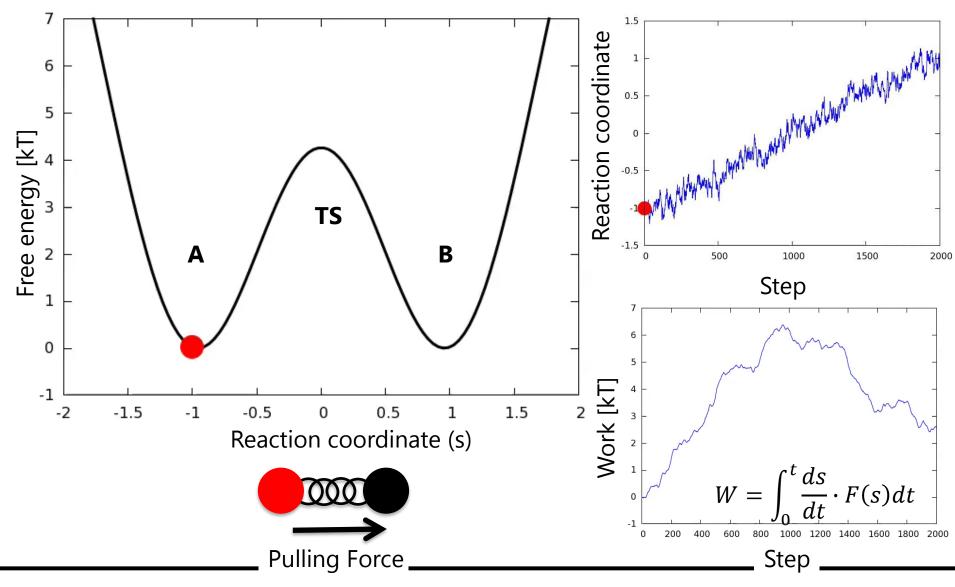
Jarzynski's formula

So far we assumed that the system is always in equilibrium, with or without bias. *That requires an infinitely long simulation!* Jarzyinski's identity:

$$e^{-(F_1 - F_0)/kT} = \left\langle e^{-W_{0 \to 1}/kT} \right\rangle_{non-eq}$$

We can achieve the same with an ensemble of "short" simulations (maybe 10²³ of them?)

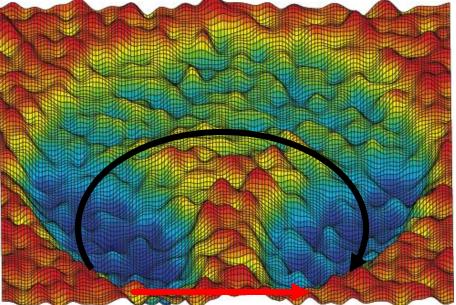
Steered MD: trajectory is set



Don't forget: many dimensions!

How to model a path through the space of configurations of a large molecular system is the *least trivial problem in simulation*.

The shortest path may not be a line!



E et al, PRB 2002

More than one dimension

Simplifying 1000s of degrees of freedom into "the" reaction coordinate λ is not impossible with time and effort, but still difficult!

Perhaps we don't need to find "the one".

We use two or more "collective variables" that define a small enough space: "the" reaction coordinate λ will live in this space.

(But not more than four or five, please.)

More than one dimension

Nearly all *"good"* free energy methods can deal with two or more collective variables.

Arguably this is most straightforward with the *probability-based methods*: the difficulty is only collecting a multi-dimensional histogram, $n(\lambda, \zeta)$:

$$n(\lambda_0, \zeta_0)/n(\lambda_1, \zeta_1) = p(\lambda_0, \zeta_0)/p(\lambda_1, \zeta_1) = e(F(\lambda_1, \zeta_1) - F(\lambda_0, \zeta_0))/kT$$

How to use each method in NAMD?

Thermodynamic integration (Kirkwood, 1935):

Colvars, Alchemical module

Free-energy perturbation (Zwanzig, 1954) Alchemical module

Probability-based (umb. samp., MBAR, metadyn...)

Colvars, TclForces, Plumed (w. patch)

Jarzynski's identity (Jarzynski, 1997, used with SMD)

Colvars, TclForces, Plumed (w. patch)

Final recommendations

- <u>Aim for reproducibility</u>: if you can't converge to the results of an existing study, beware of possible statistical flukes (yours or theirs!).
- Use automation to your advantage: there will always be more compute cores available.
- No conclusive evidence of one method being better all the time. But for a chosen problem, some can be better than others.
- And we can always combine them...

New Colvars feature: add-on TI

The **thermodynamic integration (TI)** free energy estimator is now **used by all biases** (not only ABF), when supported by the variable.

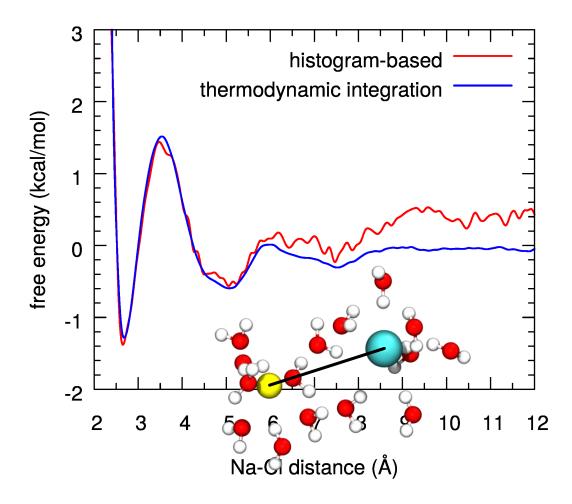
$$\Delta F = \int_{\lambda}^{\lambda} = 0 \frac{dF}{d\lambda} d\lambda = \int_{\lambda}^{\lambda} = 0 \left\langle \frac{dU}{d\lambda} \right\rangle d\lambda$$

Example: a metadynamics simulation produces:

- **output.pmf** (obtained from summing together the Gaussian functions).
- output.ti.pmf (obtained from projecting total atomic forces on collective variables).

The code will check whether the functions used supports internal force projection.

New Colvars feature: add-on TI



The Colvars module

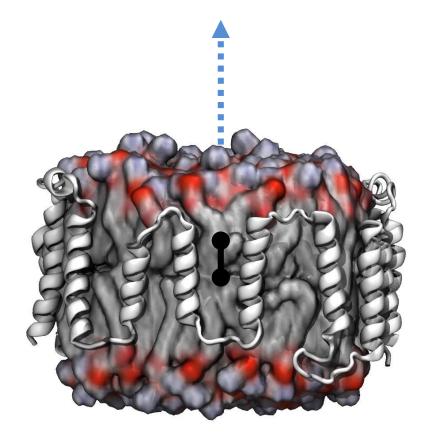
- A library permanently linked to NAMD, LAMMPS (package: USER-COLVARS) and VMD.
- Implements differentiable collective variables / order parameters / reaction coordinates.
- **Popular methods** with uniform syntax: *umbrella* sampling, steered MD, metadynamics, Hamiltonian TI/FEP, conformational thermodynamic integration, adaptive biasing force (ABF), temp-accelerated CV sampling, string method in CV space.
- Mostly, to escape comfortable energy minima.

How to use a collective variable?

- Choose an existing primitive function, or "component" (e.g. ξ = rmsd { ... }).
- 2) Define a polynomial of components (e.g. $\xi = d_1 d_2$ via componentCoeff = ±1, componentExp = 1).
- 3) Use the Lepton library by Peter Eastman (e.g. customFunction $\xi = \exp(-RMSD)$).
- 4) Write your own function ξ in a scripting language (Tcl, and Python soon) via scriptedFunction (and ξ may even be the Cartesian coordinates!).
- 5) Write a new function or wrapper in C or C++ (*Colvars' source code is extensively documented*).

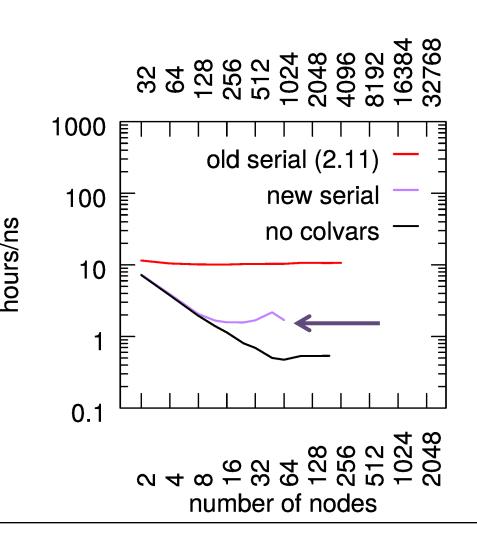
How many atoms?

ApoA1 benchmark on TACC Stampede. One collective variable: displacement between COMs of protein backbone (1600 atoms) and lipid atoms (8300). Harmonic potential and system forces (i.e. the TI estimator of ABF) are both enabled.



Revised NAMD interface (2.12)

- Index arrays that are updated on demand as atoms are requested during a run (NAMD is scripted!).
- Inline functions to access coordinates and forces.
- Some variables are efficiently parallelized over nodes.
- Shared-memory processing of variables and biases.

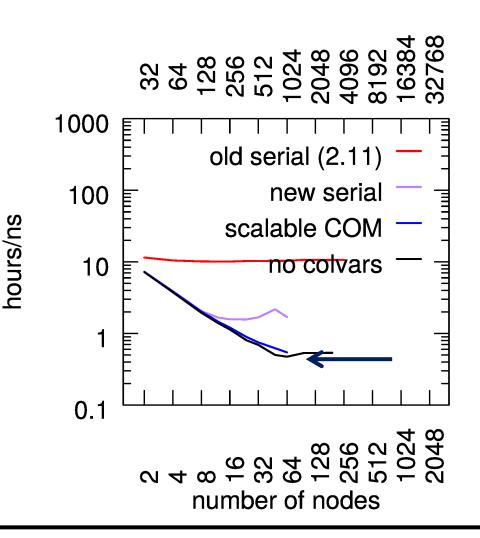


Compute COMs in parallel

Off-load calculation of COMs to NAMD computes: communicate few data structures.

For now parallelization applies only to functions of COMs: distances, angles, dihedrals, etc. (More coming)

Enabled automatically in NAMD 2.12 (scalable on).



Shared-memory processing

Use CkLoop functionality recently added to Charm++ for NAMD, or standard OpenMP for LAMMPS. Distribution of work applies to:

- Many colvar components/functions: useful for complex Tcl-based restraints (e.g. path collective variables);
- Many restraints or biases: structural refinements (e.g. replica-averaged ensembles);
- You can also break up large variables into chunks to compute in parallel, and combine with componentCoeff, customFunction, or scriptedFunction.
 (This may be done automatically in the future.)

Acknowledgements

- Jérôme Hénin (CNRS, Paris, France)
- Jim Phillips, John Stone, Chris Harrison, and Klaus Schulten (UIUC)
- Chris Chipot (UIUC = U Nancy)
- Axel Kohlmeyer and Michael Klein (Temple U)
- Jeff Comer (KSU)
- Anyone who made changes to the code.
- Fabrizio Marinelli, Lucy Forrest and José Faraldo-Gomez (NIH)

Resources

- Repository for source code and accessories (scripts, minimal examples): <u>https://github.com/Colvars/colvars</u>
- Webpage with user guides (PDF & HTML): <u>https://colvars.github.io/</u>
- Ready-to-run input for VMD and NAMD: <u>https://github.com/Colvars/examples</u>
- Other tutorials in this workshop: <u>ABF</u>, <u>protein-ligand binding</u>, <u>metadynamics</u>, <u>PMFs</u>, <u>string</u>, <u>REUS</u>, <u>AMS</u>, <u>complex pathways</u>