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pH Effects in Biochemistry
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Constant pH and the semi-grand canonical ensemble

I Conventional MD samples a canonical ensemble:

Q =

∫
dx e−βU(x)

I Constant-pH MD samples a semi-grand canonical ensemble:

Ξ(pH) =
∑
λ∈S

Qλ10−nλpH

The added interaction is between the number of protons, nλ, and a
pH bath. λ is a new variable designating the protonation state.



Networks of protonation states
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pH as a thermodynamic force

I Classical MD utilizes mechanical forces

F = −∇U[x(t)] = m
∂v
∂t

; v =
∂x
∂t

I pH may be regarded as a thermodynamic force

ln 10pH = −∂ ln Ξ

∂nλ

Mechanical forces – deterministic/stochastic dynamics
Thermodynamic forces – probabilistic “dynamics”

Pλ(pH) ∝ Qλ10−nλpH



How do we define nodes in the network?

Consider a system with m sites:



Protonation state probabilities/populations

〈A(x ,λ)〉pH =

∑
λ∈S

∫
dx A(x ,λ)e−βU(x ;λ)10−nλpH

Ξ(pH)

Pλs = 〈λs〉pH – the probability that site s is occupied

There are two kinds of terms in the summation, λs = 0/1

Ξ(pH) = Ξ0(pH) + Ξ1(pH)10−pH

thus,

〈λs〉pH =
Ξ1(pH)10−pH

Ξ0(pH) + Ξ1(pH)10−pH
=

1

1 + Ξ0(pH)
Ξ1(pH) 10pH



Connection to thermodynamics

〈λs〉pH =
1

1 + Ξ0(pH)
Ξ1(pH) 10pH

compares to the Henderson-Hasselbalch equation such that

pKa(pH) = − log
Ξ0(pH)

Ξ1(pH)
,

except that now pKa(pH) is pH dependent. One often uses the
approximation:

pKa(pH) ≈ pK
(a)
a + (1− n)

(
pH− pK

(a)
a

)
,

where n is the Hill coefficient and pK
(a)
a is the “apparent” pKa.



Networks of protonation states
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We can now see that the fraction of simulation time spent in a
given protonation state is directly impacted by the difference of the
pKa of a residue/site and the pH.



That’s great – how do we sample the states?

1. Sample the configuration space of a given state
(i.e., sample x for a given Qλ)

2. Change between protonation states according to the number
of protons and the given pH
(i.e., sample λ and choose a new Qλ)

This may be regarded as a Gibbs sampling, whereby the
configuration and state are sampled in an alternating fashion.



A problem! Environmental response

I (De)Protonation is a significant electrostatic event.

I Non-trivial reorganization of solvent, possibly solute.

I Naive sudden changes in protonation are likely to cause high
energy configurations and/or steric clashes.



Possible solutions to the solvent clash problem
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“Fast” alchemical growth

I Swap the protonation state by using time-dependent
interactions.

I Gradually stronger interactions will induce solvent response.

I Clashes are avoided by using the natural dynamics of the
model.



The neMD/MC constant pH paradigm

I Drive alchemical growth with nonequilibrium work

I Accept/reject with a generalized Metropolis criterion

Stern J Chem Phys, 2007; Chen & Roux J Chem Theory Comput, 2015



The neMD/MC constant pH paradigm
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Beyond Gibbs sampling: Hybrid MD and neMD/MC

We now alternate conventional sampling with MD (x) and
Metropolis Monte Carlo sampling (x and λ):

ρ(x ,λ)T (x ,λ→ x ′,λ′) = ρ(x ′,λ′)T (x ′,λ′ → x ,λ)

such that the neMD/MC transition probability is:

T (x ,λ→ x ′,λ′) = min

[
1,
ρ(x ′,λ′)
ρ(x ,λ)

]
= min

[
1, e−βW 10−∆npH

]

(If you’d like, MD uses the probability T (x → x ′) = 1.)



Important considerations

I How long should I sample the equilibrium stage?

I How long should I sample the nonequilibrium stage
(the “switch time,” τswitch)

I Rejecting a nonequilibrum trajectory is expensive, how can we
avoid doing that so much?



The two-step “inherent” pKa algorithm

T (x ,λ→ x ′,λ′) = T (i)(λ→ λ′)T (s)(x → x ′|λ→ λ′)

T (i)(λ→ λ′) = min
[
1, 10pK

(i)
a (λ,λ′)−∆npH

]
I neMD/MC can be split into two parts

1. T (i) – only depends on λ and the pH – CHEAP
2. T (s) – depends on the switch (W ) – COSTLY

I Effort is shifted by estimating a parameter, pK
(i)
a

I Optimal efficiency achieved for exact pKa

I Dramatically improved performance on wide pH ranges!

I Can do even better for systems with more than two states.

Chen & Roux J Chem Theory Comput, 2015; Radak, et al submitted



Let’s look at this graphically

0.0

0.2

0.4

0.6

0.8

1.0

pKa - 2 pKa - 1 pKa pKa + 1 pKa + 2

add
if unoccupied

remove
if occupied

be occupied
p
ro

b
a
b
ili

ty

pH

I It’s silly to try to add/remove protons to/from acidic/basic
residues at high/low pH

I Transitions are proposed in proportion to the estimated
population.



What about after we’ve proposed a switch?

I A short switch will not change much and likely be rejected.

I A long switch is expensive (limit of a single switch – BAD).

I Since the switch success depends on the work, let’s analyze
that.



Work and force fluctuations – a typical neMD/MC cycle
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Theoretical and Empirical Performance Analysis
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I Well-defined criteria for
optimization.

I Cost is quite tractable.
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NAMD Constant pH features

I Flexible Tcl interface source

...lib/namdcph/namdcph.tcl

I PSF build procedure is unchanged (automated psfgen)

I Implemented with PME and full electrostatics

I Normal CPU scaling (no GPU yet) - depends on alchemy

I Companion analysis script cphanalyze

pH 7.0

cphNumstepsPerSwitch 7500 ;# run 7500 steps per switch

cphRun 5000 10 ;# run 10 cycles of 5000 MD steps



Output and Analysis
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I New output cphlog and
cphrst

I New checkpoint files
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I Can boost performance with
WHAM (cphanalyze)

I Can also analyze residue
correlations



Reference amino acids are well-reproduced
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I Adjustments to force field
enforce empirical reference
values

I Implicitly model solvated
proton and bond energy
effects

I Bonus - accurate
reproduction of tautomeric
ratios!



What about challenging environments?

I Single titratable peptide
(AADAA)

I Lipid relaxation is slow
(slower than water)

I Low dielectric region should
perturb pKa in obvious way



A B

z = 50 Å z = 20 Å z = 0

bulk water

I Significant shifts due to low dielectric region.

I Switch time of 10 ps is sufficient.
Radak, et al submitted Teixeira, et al J Chem Theory Comput, 2016



Staph nuclease (SNase) - A constant pH benchmark



Benchmarking of SNase pKa values
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Concluding Remarks/Future Directions

I Things we are working on:
I Performance improvements in alchemy – CUDA support
I Titratable lipids and phosphates

I Things we would like to work on:
I psfgen improvements – support for Drude
I Better visualization support in VMD
I More powerful interface for analysis (PyNAMD)
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