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pH Effects in Biochemistry

Casey, et al Nat Rev Mol Cell Biol, 2010
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Constant pH and the semi-grand canonical ensemble

» Conventional MD samples a canonical ensemble:
Q= /dx e AUX)

» Constant-pH MD samples a semi-grand canonical ensemble:

Z(pH) = > Qa10™™P"

AeS

The added interaction is between the number of protons, ny, and a
pH bath. X is a new variable designating the protonation state.



Networks of protonation states
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Networks of protonation states
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pH as a thermodynamic force

» Classical MD utilizes mechanical forces

ov 0x
F=—-VU[x(t)] = moar V=g
» pH may be regarded as a thermodynamic force
dln=
In10pH = —
n10p RN

Mechanical forces — deterministic/stochastic dynamics
Thermodynamic forces — probabilistic “dynamics

P)\(pH) X Q)\].O_n)‘pH



How do we define nodes in the network?

Consider a system with m sites:

A= {)\1,)\2; . ..)\3,)\3+1; .. )\m}
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Protonation state probabilities/populations

_ Yoxes S dx A(x, A)e U107 e
=(pH)
Py, = (As)pn  — the probability that site s is occupied

S

(A(x, A))pH

There are two kinds of terms in the summation, As = 0/1
=(pH) = Zo(pH) + Z1(pH)10~P"
thus,

Oahgpt = —1eH1O L
PPR T Zo(pH) 4 Za(pH)10-PH g —°§;’”§10pH




Connection to thermodynamics

1
- Zo(PH) 1 pH
14 S2ER 100

<>\5>pH

compares to the Henderson-Hasselbalch equation such that

=o(pH)
=1(pH)’

pKa(pH) = —log

except that now pK,(pH) is pH dependent. One often uses the
approximation:

pRa(pH) ~ K + (1= ) (pH — pK(?),

where n is the Hill coefficient and pK§a) is the “apparent” pKj.



Networks of protonation states
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We can now see that the fraction of simulation time spent in a

given protonation state is directly impacted by the difference of the
pK, of a residue/site and the pH.



That's great — how do we sample the states?

1. Sample the configuration space of a given state
(i.e., sample x for a given Q)

2. Change between protonation states according to the number
of protons and the given pH
(i.e., sample X and choose a new Q)

This may be regarded as a Gibbs sampling, whereby the
configuration and state are sampled in an alternating fashion.



.
A problem! Environmental response

» (De)Protonation is a significant electrostatic event.
» Non-trivial reorganization of solvent, possibly solute.

» Naive sudden changes in protonation are likely to cause high
energy configurations and/or steric clashes.



Possible solutions to the solvent clash problem

" ;s auxillary
K M. implicit
L ow° Mc Mb T solvent
- v
: = @
H Baptista, et al. 2002.
Swails, et al. 2014.
H H continuous
WO w°u  fractional
0-® o o-o o—H o-@°"  proton
H
@ Q" Q‘
L n Lee, et al. 2004,
o Donnini, et al. 2011,
H H H H
WO 40 w0 ) 0
o - o " . .

W w° 2" o discrete copy
. ."K % .4&0»4 " fractional
o H o " o proton

.0 H o
0_‘( d_‘i‘ Lee, et al. 2014.



“Fast” alchemical growth

- ’

! a
alchemical growth é/

» Swap the protonation state by using time-dependent
interactions.

» Gradually stronger interactions will induce solvent response.

> Clashes are avoided by using the natural dynamics of the
model.
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The neMD/MC constant pH paradigm
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» Drive alchemical growth with nonequilibrium work

> Accept/reject with a generalized Metropolis criterion

Stern J Chem Phys, 2007; Chen & Roux J Chem Theory Comput, 2015



The neMD/MC constant pH paradigm

removal of auxiliary
coordinates

MC sample of auxiliary
coordinates

» Drive alchemical growth with nonequilibrium work

» Accept/reject with a generalized Metropolis criterion

Stern J Chem Phys, 2007; Chen & Roux J Chem Theory Comput, 2015



Beyond Gibbs sampling: Hybrid MD and neMD/MC

We now alternate conventional sampling with MD (x) and
Metropolis Monte Carlo sampling (x and X):

p(xX, N)T(x, A = X', X)) = p(x', X)T(x', X — x,A)

such that the neMD/MC transition probability is:

/ A/
T(x,A — x'; ') = min [1, pLX, )} = min [1, e AWy AneH
p(x, A)

(If you'd like, MD uses the probability T(x — x’) = 1.)



Important considerations

» How long should | sample the equilibrium stage?

» How long should | sample the nonequilibrium stage
(the “switch time,” Tewitch)

» Rejecting a nonequilibrum trajectory is expensive, how can we
avoid doing that so much?



The two-step “inherent” pK, algorithm

T(x, A= x' XN)=TON\ = X)) TE(x - x'|A = X)

T(’)(A — A/) — min |:]_’ lOngi)(}\,X)—Aan

v

neMD/MC can be split into two parts

1. TO - only depends on A and the pH — CHEAP
2. T() - depends on the switch (W) — COSTLY

v

Effort is shifted by estimating a parameter, pKESi)

v

Optimal efficiency achieved for exact pK,

v

Dramatically improved performance on wide pH ranges!

» Can do even better for systems with more than two states.

Chen & Roux J Chem Theory Comput, 2015; Radak, et al submitted



Let's look at this graphically
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» It's silly to try to add/remove protons to/from acidic/basic
residues at high/low pH

» Transitions are proposed in proportion to the estimated
population.



.
What about after we've proposed a switch?

> A short switch will not change much and likely be rejected.
» A long switch is expensive (limit of a single switch — BAD).

> Since the switch success depends on the work, let's analyze
that.



Work and force fluctuations — a typical neMD/MC cycle

“molecular” timescale
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Theoretical and Empirical Performance Analysis
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NAMD Constant pH features

Flexible Tcl interface source
...lib/namdcph/namdcph.tcl

v

v

PSF build procedure is unchanged (automated psfgen)

v

Implemented with PME and full electrostatics

v

Normal CPU scaling (no GPU yet) - depends on alchemy

» Companion analysis script cphanalyze

pH 7.0
cphNumstepsPerSwitch 7500 ;# run 7500 steps per switch
cphRun 5000 10 ;# run 10 cycles of 5000 MD steps



Output and Analysis
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Reference amino acids are well-reproduced

» Adjustments to force field
| enforce empirical reference
— values

CYS: 9.5+/- 0.1
08 |

ASP: 4.1 +/- 0.1

08 » Implicitly model solvated
proton and bond energy

effects

0.4 | HIS-3: 6.6 +/- 0.2

L HIS-e: 7.1 4 02

protonated fraction/state population

ozf » Bonus - accurate

reproduction of tautomeric
ratios!

0.0




.\ _________________________________________
What about challenging environments?

» Single titratable peptide
(AADAA)

> Lipid relaxation is slow
(slower than water)

> Low dielectric region should
perturb pKa in obvious way
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» Significant shifts due to low dielectric region.

» Switch time of 10 ps is sufficient.
Radak, et al submitted Teixeira, et al J Chem Theory Comput, 2016



Staph nuclease (SNase) - A constant pH benchmark
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Benchmarking of SNase pK, values

7 o » Good correlation with
. g measured values for
o carboxylates
8 5r o » Bonus - estimates for
< 088 , HIS and LYS
g residue this work
E g,
‘e g . ﬁﬂ‘iivv"??;;k{.g%ﬁ g LYS 24 8.43(0.45)
R uang, et al. -
) | Huang etal.-ASP  ® 8 666 056
it ) HIS (0.59

121 5.36 (0.50)

pKa.expt




S ———
Concluding Remarks/Future Directions

» Things we are working on:

» Performance improvements in alchemy — CUDA support
» Titratable lipids and phosphates

» Things we would like to work on:
» psfgen improvements — support for Drude
» Better visualization support in VMD
» More powerful interface for analysis (PyNAMD)
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