Integrative Modeling Examples from Modern Research

University of Illinois at Urbana-Champaign

What can we discover with the Computational Microscope?

... Views Living Systems from Electron to Cell

Size Matters!

Detail Matters too!

Application of MD simulations: Ras at Membrane

Molecular dynamics simulations connect function and dynamics to structural data from diverse experimental sources to investigate critical cellular processes occurring at the sub-Ångstrom level up to the macromolecular level.

The Key Strategy for Discoveries

A Sampling of TCBG's MDFF Projects

Integrating experimental methods into computational modeling

The Receycling System of the Cell

The ubiquitin proteasome proteolytic pathway

Near-atomic model of the 26S proteasome

Functional subunits of the 26S proteasome

Ubiquitin Recognition (Rpn10, Rpn13, Rpn1)

Deubiquitylation (Rpn11)

Substrate Unfolding (ATPase-ring)

Substrate Degradation (α-ring, β-ring)

Deubiquitylation subunit: Rpn11

Complete models are a basic prerequisite to perform MD simulations

Deubiquitylation (Rpn11) Active site of Rpn11: substrate is cleaved from ubiquitin tag **Missing segments** - highly flexible - ambigous density Chain V of PDB-ID 4CR2

www.ks.uiuc.edu/~trudack

Unverdorben et al. PNAS 2014

incomplete structural model deposited in the PDB

complete structural model that fits cryo-EM data

Rosetta

Leaver-Fay *et al.* Methods Enzymol. 2011 Porter *et al.* PLoS One 2015

VMD/NAMD

Humphrey *et al.* J. Mol. Graph. 1996 Philips *et al.* J. Comput. Chem. 2005

Integrating user expertise into de novo structure prediction

www.ks.uiuc.edu/~trudack www.ks.uiuc.edu/Research/MDFF

Model filtering by secondary structure

Represenative model of the predicted averaged secondary structure pattern for Rpn11's C-terminal tail (purple)

Visual inspection of cryo-EM density

Predicted model to initiate MDFF

Interactive Molecular Dynamics Flexible Fitting

MDFF can be run on Cloud computing for low cost!

MDFF runs can be laucnhed through QwikMD!

www.ks.uiuc.edu/~trudack

MDFF Tutorial on You Tube and at http://www.ks.uiuc.edu/Research/mdff/

Complete model of Rpn11 fitted to density

Quality check by cross-correlations

Incomplete vs. complete model

Low vs. high resolution density model

Low vs. high resolution density model

Deubiquitylation (Rpn11)

Functional subunits of the 26S proteasome

Ubiquitin Recognition (Rpn10, Rpn13, Rpn1)

Deubiquitylation (Rpn11)

Substrate Unfolding (ATPase-ring)

Substrate Degradation (α-ring, β-ring)

Ubiquitin recognition by Rpn10

Ubiquitin Recognition (Rpn10)

www.ks.uiuc.edu/~trudack

Zhang*, Vucovic*, Rudack*, Han, Schulten 2016 JPC B (in press)

Ubiquitin Recognition

Ubiquitin recognition by Rpn10

Ubiquitin Recognition (Rpn10)

www.ks.uiuc.edu/~trudack Zhang*, Vucovic*, **Rudack***, Han, Schulten 2016 JPC B (in press)

Ubiquitin recognition and deubiquitylation

Generalized Simulated Annealing – GSAFold

GSAFold NAMD Plugin – Allows ab initio structure prediction

New implementation of GSA on supercomputers allows the conformational search for large flexible regions.

 Amino acid residues connecting Rpn10's UIM with the proteasome are likely to be disordered and stochastic searching algorithms such as GSA can be used to explore their conformational space

Conformational State

 GSAFold coupled to NAMD searches low-energy conformations to be used as starting points for the molecular dynamics studies.

Rafael C. Bernardi Marcelo Melo

Conformation Space of Rpn10 Anchor

Ubiquitin Transport to Deubiquitinase Rpn11

Ubiquitin Recognition (Rpn10)

Deubiquitylation (Rpn11)

Ubiquitin Transport

Functional subunits of the 26S proteasome

The Motor of the Proteasome

Resolved nucleotides are needed

3.9 Å Resolution Density of the Human 26S Proteasome

High-resolution Real Space Refinement with MDFF

Advantage:

Positions of bulky side chains can be observed from density

Challenge:

no detailed side chain orientation X-ray structure refinement tools failed in the range of 4-5 Å resolution

Solution:

combining MDFF with monte carlo based backbone and side chain rotamer search algorithms in an iterative manner

> Goh, Hadden, Bernardi, Singharoy, McGreevy, Rudack, Cassidy, Schulten, Annu. Rev. Biophys., 2016 45.1

The ATPase Motor of the 26S Proteasome

PDB-IDs: 5L4G, 5L4K EMDB-ID: 4002

Schweitzer A, Aufderheide A, Rudack T, et al. "The structure of the 26S proteasome at a resolution of 3.9 Å." PNAS 2016 in press.

The Motor Action of protein unfolding

NAMD QM/MM interface

The atomic structure enable detailed investigations of the unfolding process by path sampling techniques. Chemical reaction in the active sites can be studied through QM/MM simulations.

● ○● qwikMD - Easy and Fast Molecular Dynamics Help Image: Teasy Run Advanced Run Basic Analysis Browser Load NMR State Chain/type Selection ♥ Structure Manipulation Image Chain Residue Range Type Representation Color	NAMD QM/MM interface with MOPAC and ORCA will be released in the second semester of 2016
Molecular Dynamics SMD MDFF QM/MM ABF Solvent Implicit ▼ NaCl ♥ Concentration 0.15 mol/L Implicit QM Sofware MOPAC ♥ Set Path Number of QM Regions 1 ♥ QM/MM Electrostatics Cut-Off ♥ ● PME ► MD Protocol - Number of Steps Classical 5,000 Minimization 500,000 Equilibration 1,000,000 MD Hybrid QM/MM 100 Minimization 500 Equilibration 50,000 MD	Res D Structure Manipulation I MET A protein 2 GLN A protein 3 ILE A protein 5 VAL A protein 6 LYS A protein 7 THR A protein 8 LEU A protein 10 GLY A protein 11 LYS A protein 12 THR A protein 13 ILE A protein 13 ILE A protein 0 Clear Selection A
Classical: I= 2/C P= 1 atm QM/MM: I= 2/C P= 1 atm • QM Calculation QM ID QM Region Charge Mult QM Protocol LiveSolvSel 1 157 atoms 0 1 PM7 XYZ T=2M 1SCF M0ZYME V Center of Mass • Simulation Setup (i) Working Directory Load Save Background: O Black White O Gradient Color Scheme: VMD Classic • Prepare Ive Simulation Reset Restart from Last Step	Res ID Res NAME Chain Type 1 MET A protein 2 GLN A protein 3 ILE A protein 4 PHE A protein 5 VAL A protein 6 LYS A protein 7 THR A protein 9 THR A protein 10 A from OM Region 275 atoms selected 207 atoms selected Add Solvent within 10 A 0 OKLY A protein 11 LYS A protein 12 THR A protein 13 ILE A protein 13 LE A 11 LYS A protein 12 THR A protein 13 LE A 14 A protein 15 VAL A 12 THR A protein 13 LE A LE
► Simulation Controls	Next QwikMD release will support QM/MM

www.ks.uiuc.edu/~trudack

www.ks.uiuc.edu/Research/qwikmd/

Converting Chemical Energy into Motor Action

Abhi Singharoy

ModelMaker

Bridging Computation and Experiment

In order to obtain **biomedical discoveries** different **experimental** and **computational** methods need to be **integrated**.

Automation is important but user expertise is equally important.

Acknowledgments

Theory

Experiment

of biochemistry

Klaus Schulten Ryan McGreevy

Wolfgang Baumeister Friedrich Förster Antje Aufderheide

GSA

Rafael Bernardi Marcelo Mello

www.ks.uiuc.edu/~trudack

Workshop

Jodi Hadden

NIH Center for Macromolecular Modeling & Bioinformatics

Ryan McGreevy

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

Maximilian Scheurer

Marc Siggel

Justin Porter