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What can we discover with the Computational Microscope?  
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The range of the Computational Microscope 
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Size Matters! 
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X-ray Crystallography
(1.6-2.5 Å)

Experiment

FTIR-Spectroskopy (Δν = 1.0 cm-1; 10-4 Å)
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Application of MD simulations: Ras at Membrane 

Molecular dynamics simulations connect function and dynamics 
to structural data from diverse experimental sources 
to investigate critical cellular processes occurring at the 
sub-Ångstrom level up to the macromolecular level.  

Protein 
In Solvent 

Protein 
+ Membrane 

Multi-Protein 
Complex Cell 
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MDFF 
ModelMaker 

NAMD 

QM/MM 

VMD 

GSA 

NAMD 
VMD 

Enhanced  
Sampling 

The Key Strategy for Discoveries 

QwikMD QwikMD 
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HIV 

Chromatophore 
Chemosensory Array 

Rous Sarcoma Virus Rabbit Hemorrhagic Disease 

A Sampling of TCBG‘s MDFF Projects 

26S Proteasome 
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Integrating experimental methods into computational modeling 
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The Receycling System of the Cell 
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The ubiquitin proteasome proteolytic pathway 

26S Proteasome 

Substrate tagging by Ubq4 

Ubq4-substrate recognition 

Substrate degradation 

Borte
zomi

b

Kisselev  Cancer Cell 2013 
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Near-atomic model of the 26S proteasome 

Wolfgang Baumeister 

Cryo-EM density 
Subunits from  X-ray crystalography, 

NMR, and homology modeling 

PDB-ID 4CR2 

EMDB-ID 2594 

Resolution 7.7 Å 

Unverdorben et al. PNAS 2014 

Molecular Dynamics Flexible Fitting (MDFF): 
 
Trabuco et al. Structure 2008 
 

Friedrich Foerster 
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Functional subunits of the 26S proteasome 
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Deubiquitylation subunit: Rpn11 

Unverdorben et al. PNAS 2014 

Chain V of PDB-ID 4CR2 

Missing segments 

- highly flexible 

- ambigous density 

Active site of Rpn11: 
substrate is cleaved 
from ubiquitin tag 

Complete models are a basic prerequisite to perform MD simulations 
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Combining Rosetta and MDFF through VMD 

incomplete structural model deposited in the PDB

complete structural model that fits cryo-EM data

de novo
structure

prediction

energy
ranking

model
filtering

interactive
MDFF of

cryo-EM data

incomplete structural model deposited in the PDB

complete structural model that fits cryo-EM data

de novo
structure

prediction

energy
ranking

model
filtering

interactive
MDFF of

cryo-EM data

Rosetta

incomplete structural model deposited in the PDB

complete structural model that fits cryo-EM data

de novo
structure

prediction

energy
ranking

model
filtering

interactive
MDFF of

cryo-EM data

Rosetta VMD/NAMD
Leaver-Fay et al. Methods Enzymol. 2011 
Porter et al. PLoS One 2015  

Humphrey et al. J. Mol. Graph. 1996 
Philips et al. J. Comput. Chem. 2005 

Integrating user expertise into de novo structure prediction 

www.ks.uiuc.edu/Research/MDFF 
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Model filtering by secondary structure 
Secondary structure histogram of  

predicted ensembles of Rpn11‘s C-terminal tail   
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Predicted model 

Represenative model of the  
predicted averaged secondary structure pattern  

for Rpn11‘s C-terminal tail (purple) 

Rosetta tends to  
build compact structures 

Secondary structure pattern 
of amino acids 217‑306 (purple)   
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Visual inspection of cryo-EM density 
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Predicted model to initiate MDFF  

Represenative model 
of predicted ensemble for  
Rpn11‘s C-terminal tail 

Secondary structure pattern 
of amino acids 217‑306 (purple)   
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Interactive Molecular Dynamics Flexible Fitting 

MDFF  Tutorial on You Tube and at http://www.ks.uiuc.edu/Research/mdff/ 

MDFF can be run on Cloud computing for low cost! 

MDFF runs can be laucnhed through QwikMD! 
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Complete model of Rpn11 fitted to density 
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Quality check by cross-correlations  

0 

0.65 
Rpn11 colored by 
local cross correlations 

cross correlation 
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Incomplete vs. complete model 
Incomplete model  Complete model  

Rosetta/MDFF 

Cross correlation 0.61   Cross correlation 0.63   
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Low vs. high resolution density model 

Isolated lid cryo-EM model 

Gabriel Lander  / Andreas Martin 

PDB-ID 3JCK  EMDB-ID 6479 

Resolution 3.5 Å 

Dambacher et al. eLife 2016 

Red: 3.5 Å cryo-EM model 
of Rpn11 within the  
isolated proteasomal lid 

Purple: completed 
Rpn11 model within 
the 7.7 Å proteasomal  
cryo-EM density 

26S proteasome cryo-EM density 

Wolfgang Baumeister 

EMDB-ID 2594 

Resolution 7.7 Å 

Unverdorben et al. PNAS 2014 
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Low vs. high resolution density model 
Structure predicted for low resolution 
matches structure of high resolution 

Secondary structure pattern obtained by 
Rosetta/MDFF employing a 7.7 Å density   

Secondary structure pattern of a structure 
modeled into a 3.5 Å density 
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Functional subunits of the 26S proteasome 
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Ubiquitin recognition by Rpn10 

K48-linked tetra-ubiquitin Rpn10 Recognition 

Re-folding, electrostatic, and hydrophobic interactions lead to recognition 

Zhang*, Vucovic*, Rudack*, Han, Schulten 2016 JPC B (in press) 
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Ubiquitin Recognition 

Rpn10 
(UIM) δ-‐	  

δ+	  
δ+	  

Monoubiquitin 

Tetraubiquitin 



www.ks.uiuc.edu/~trudack 

Ubiquitin recognition by Rpn10 

Zhang*, Vucovic*, Rudack*, Han, Schulten 2016 JPC B (in press) 
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Ubiquitin recognition and deubiquitylation 

Ubiquitin Transport 

Rpn10

PDB-ID 2X5N  
(S. Pombe)

PDB-ID 2KDE 
(human)

UIM 
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Generalized Simulated Annealing – GSAFold  

•  GSAFold coupled to NAMD searches low-energy 
conformations to be used as starting points for the 
molecular dynamics studies.  

GSAFold NAMD Plugin – Allows ab initio structure prediction 

Marcelo Melo  Rafael C. Bernardi 

•  Amino acid residues connecting 
Rpn10’s UIM with the proteasome 
are likely to be disordered and 
stochastic searching algorithms 
such as GSA can be used to 
explore their conformational space 

New implementation of GSA on supercomputers  
allows the conformational search for large flexible regions. 
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Conformation Space of Rpn10 Anchor 

Fishing Rod

Fishing Hook

Globular Part

Center of Mass
of UIM

The conformational space of the 
Rpn10 linker is highly flexible. 
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Ubiquitin Transport to Deubiquitinase Rpn11 

Ubiquitin Transport 
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Functional subunits of the 26S proteasome 
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The Motor of the Proteasome 
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Resolved nucleotides are needed 
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3.9 Å Resolution Density of the Human 26S Proteasome 
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High-resolution Real Space Refinement with MDFF 

Advantage: 
Positions of bulky side chains can be observed from density  
 
Challenge:  
no detailed side chain orientation 
X-ray structure refinement tools failed in the range of 4-5 Å resolution  
 
Solution:  
combining MDFF with  
monte carlo based backbone and side chain rotamer search algorithms 
in an iterative manner   

Goh, Hadden, Bernardi, Singharoy, McGreevy, Rudack, Cassidy, Schulten, 
 Annu. Rev. Biophys., 2016 45.1 
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The ATPase Motor of the 26S Proteasome 

Schweitzer A, Aufderheide A, Rudack T, et al. 
“The structure of the 26S proteasome at a 
resolution of 3.9 Å.” PNAS 2016 in press. 

PDB-IDs:  5L4G, 5L4K 
EMDB-ID: 4002 
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The Motor Action of protein unfolding 
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NAMD QM/MM interface 
The atomic structure enable detailed investigations of the unfolding process by 
path sampling techniques. Chemical reaction in the active sites can be studied 
through QM/MM simulations. 

NAMD QM/MM interface with 
MOPAC and ORCA will be 

released in the 
second semester of 2016 

Next QwikMD release will 
support QM/MM 

www.ks.uiuc.edu/Research/qwikmd/ 
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Converting Chemical Energy into Motor Action 

Abhi Singharoy 

Motor Action of  
ATP Synthase 
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Bridging Computation and Experiment 

Proteins Proteins 
+ Membrane Cell Multi-Protein 

Complex 

Experimental 
Data 

Model 

Function 

Computational 
Modeling 

Molecular 
Dynamics 

cryo-EM/ET FRET AFM X-ray 

Visualization 
Analysis 

Experimental 
Validation 

NMR 
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Take Home Message 

Automation is important but user expertise is 
equally important. 

In order to obtain biomedical discoveries 
different experimental and computational 

methods need to be integrated. 
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