Part II - Applications of MultiSeq: Network Analysis of Dynamical Recognition in RNA:Protein Complexes

Zaida (Zan) Luthey-Schulten Dept. Chemistry, Physics, Beckman Institute, Biophysics, Institute of Genomics Biology

NIH Center Macromolecular Modeling and Bioinformatics LMU Workshop 2014



#### Protein: RNA Complexes in Translation Evolutionary Analysis & Dynamics





#### r-Proteins/r-RNA "Signatures ribosomate Volution"

"Signatures Vibosontal evolution" **PNAS** 2008, **BMC** 2009, **BJ** 2010 "Motion L1 Stalk:tRNA" **JMB** 2010, "Ribosome Biogenesis" **JPC** 2012,3 "Whole cell simulations on GPUs" **IEEE** 2009,**Plos CB** 2011,**PRL**2011, **JCC** 2013, **PNAS** 2013, 2010 **PRL** 2013, **CSB** 2013 **C** 2012 **Nature** 2014

#### Molecular Dynamics Simulations

MD performed with NAMD2 (1) - System Setup

#### Simulation Parameters

Minimization: 290,000 steps Production run: 108 ns Forcefields: CHARMM27 (2), AMBER (3) Time step: 1 fs VdW frequency: 2 fs VdW cutoff: 12 Å Switching distance: 10 Å Pair list distance: 14 Å Particle Mesh Ewald Full electrostatic update: 4 fs Ensemble: NPT Langevin temperature: 298.15 K Langevin pressure: 1 atm Periodic boundary conditions

#### Contents of System(4) GluRS Glu-tRNA<sup>Glu</sup> EF-Tu GTP Ions: Mg<sup>2+</sup>, K<sup>+</sup> H<sub>2</sub>O: ~27,000 molecules System: ~130,000 atoms

#### System Perturbations

Deprotonation/protonation of reactants (aa,NTs) Changing rotamer states of residues (5) involved in long-lived salt bridges

- (1) Phillips, J.C. et al. *J. Comput Chem*, (2005); (2) MacKerell, A. et al. *Biopolymers* (2001);
- (3) Case, D. et al. J. Comput. Chem. (2005); (4) Eargle, J. et al. JMB 2010, FEBS Let. 2010;
- (5) Dunbrack Jr. and Cohen. Protein Sci. (1997)

#### Charging tRNA through allosteric signaling



### How to Construct a Network?



Nodes - defined at C<sub>a</sub> (protein) and P (nucleotide) atoms

#### How to Construct a Network?



Edges - connect nodes that are within a contact distance threshold for more than 75% of an MD trajectory



Path length = 10 (*unweighted*)

Information transfer? Weight contacts/links by correlations !

# Correlations (C<sub>ij</sub>) define signaling pathways in GluRS:tRNA



- C<sub>ii</sub> values calculated over a 16-ns window

# Nodes Cluster Together in Modules called Communities



# Nodes Cluster Together in Modules called Communities



Communities are subnetworks with many intracommunity edges but few intercommunity edges. (Girvan-Newman Algorithm)



#### Reaction Mechanism for the Transfer of Glu to tRNA<sup>Glu</sup>

Perona JJ, Rould MA, Steitz TA Biochemistry 1993

Black A, Eargle J, Sethi A, Luthey-Schulten Z. *JMB* 2010 100s ns MD simulations









community containing amino acid moiety

community containing AMP moiety







#### Communities Partition the Interaction Network Hierarchically



#### Communities Partition the Interaction Network Hierarchically



# Dynamical Networks, Conservation, and Betweeness



Optimal signal pathways: U13, U35 to A76 Critical(conserved) nodes connecting communities

Betweeness routes - highest density pair optimal paths

### Network Viewer in VMD\*



\* J. Eargle and Z. Luthey-Schulten, Bioinformatics, 2012, 28, 3000–3001

#### Changing Networks: tRNA Migration from GluRS to EF-Tu

>2-fold increase in k<sub>cat</sub> for CysRS:tRNA:EF-Tu

Zhang C, Perona J, Kang R, Francklyn C, Hou Y. *JMB* 2006 Hausmann C, Praetorius-Ibba M, Ibba M. *NAR* 2007

8-fold increase

in k<sub>cat</sub> for

LeuRS:tRNA:EF-Tu

#### Change in Protein: RNA Contacts as tRNA Migrates Glu-TRNA Glu C<sub>s</sub> / GluRS Arg205 C<sub>z</sub>







#### Change in Protein:RNA Contacts During tRNA Migration



FEBS 2012

yellow - T arm community

purple - D arm community

### Evolution of Protein/RNA Interfaces: Dynamics of EF-Tu/tRNA Recognition



J. Eargle, et al. JMB 2008

#### Dynamical Recognition EF-Tu/tRNA (E.coli)



J. Eargle, A. Sethi, A. Black, L. Trabuco & Z. Luthey-Schulten. JMB "Dynamics of Recognition in EF-Tu/tRNA Complex" (2008)



### Effects of Modified Bases on Dynamics of AC Stem/Loop

![](_page_28_Figure_1.jpeg)

Similar NMR structures for unmodified tRNA-Phe Nikonowicz, *JMB* 2002, *personal communication* 

Eargle, et al. JMB (2008))

## Flexibility in tRNA structures observed in crystallography and simulations

![](_page_29_Picture_1.jpeg)

X-ray 5 tRNAs

MD EF-Tu:tRNA:cys

MD: RMSD and Interarm Angle in tRNA:cys

JMB 2008 & FEBS Let. 2010

#### **Molecular Signatures in Evolution of Translation**

![](_page_30_Picture_1.jpeg)

Universal Phylogenetic Tree

![](_page_30_Figure_3.jpeg)

Dynamical function of ribosomal signatures: idiosyncrasies in ribosomal RNA and/or proteins characteristic of the domains of

life Roberts, ... Woese, Luthey-Schulten (2008) *PNAS*; Chen,... Gruebele, Luthey-Schulten (2010) *BJ* Chen, ...Ha, Woodson, Luthey-Schulten, (2012) *JPCB*; Lai, Chen, Luthey-Schulten (2013) *JPCB* Kim,... Luthey-Schulten Z., Ha, and Woodson (2014) *Nature* "Protein-guided RNA dynamics during early ribosome assembly"

# **Sequence** and **Structure** Signatures in Ribosomal RNA

![](_page_31_Figure_1.jpeg)

## Signature analysis

- Signatures are sequence and/or structural features that are characteristic of a domain of life<sup>\*</sup>.
- Identify the sequence signatures in the 16S rRNA and proteins using MultiSeq
- MultiSeq has a coloring based on signatures, but use Scripts to collect quantitative data about the signatures: position, composition.
- Signature analysis can be applied to any set of sequences/groupings

### 90,000 Environmental 165 rRNA Distinct A & B Sequence Signatures

• Analysis of the ribosomal signatures in 90,000 new environmental samples shows that no "gray" area exists: a ribosome is either bacterial or archaeal in nature.

• Split across cluster: 10,000 sequence on each node

![](_page_33_Figure_3.jpeg)

Data: "Greengenes", Lawrence Berkeley

## Largest signature region in the SSU

![](_page_34_Figure_1.jpeg)

![](_page_34_Picture_2.jpeg)

5-way helical junction rRNA with S4

![](_page_34_Figure_4.jpeg)

#### Model for Ribosome Assembly – Structural Intermediates

![](_page_35_Figure_1.jpeg)

Collaboration with Gruebele, Ha, Woodson labs

![](_page_36_Figure_0.jpeg)

# VMD/MultiSeq Tutorials

- 1. Evolution of Translation: AARS: tRNA
- 2. Evolution of Translation: EF-Tu:tRNA
- 3. Evolution of Translation: Ribosome
- 4. Dynamical Network Analysis
- 5. Hybrid MD-GO Folding of RNA