
Aksimentiev Group
Department of Physics and
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

Introduction to MD simulation of

DNA–protein systems

Chris Maffeo
Rogan Carr
Aleksei Aksimentiev

CONTENTS 2

Contents

1 Introduction 2

2 System setup and simulation in general 4

3 System assembly 4
3.1 Solvent . 10

4 Simulation 12

5 Analysis 13

1 Introduction

DNA is so famously known as the carrier of genetic information that the struc-
tural and dynamical aspects of the molecule are often neglected. However, most
cellular processes that involve DNA cannot be understood without taking into
account its physical properties and structure.

Single-stranded DNA (ssDNA) is a polymer composed of nucleotides. A
nucleotide consists of one of four hydrophobic, ring-shaped bases (A, T, C or
G) connected to a sugar ring, which is in turn bonded to a phosphate. The
phosphate of one nucleotide can be connected to the sugar ring of another.
When this process is repeated, ssDNA is formed.

If two strands have complementary sequences (A·T or C·G), they can anneal
to form a double-stranded DNA (dsDNA) duplex stabilized by base-stacking and
Watson-Crick hydrogen-bonding between the complementary bases. Canonical
DNA (B-DNA) in electrolyte forms a right-handed double-helix. Traversing the
duplex by one basepair corresponds to a rotation of about 34◦. A DNA duplex—
the smallest self-assembled unit of DNA—is used by the cell for packaging and
protecting its genetic information. DNA-DNA and DNA-protein interactions
can give rise to self-assembled structures; the DNA double-helix wraps twice
around a histone to form the nucleosome, which in turn form aggregates that
eventually form chromatin—the fiber that makes up the chromosome [1].

During DNA replication, the cell’s machinery unravels these structures, fork-
ing dsDNA into a pair of single DNA strands at the last step. A protein called
DNA polymerase moves along each unwound ssDNA strand to synthesize a
complementary strand. After the DNA is unwound, but before the DNA poly-
merase arrives, single-stranded DNA binding protein (SSB) wraps up the ssDNA
to prevent the strands from annealing, protect the nucleobases from chemical
modifications and prevent the formation of hairpin structures in repetitive, self-
complementary regions of DNA [2, 5].

1 INTRODUCTION 3

Utotal =
∑

bonds i

kbond
i (ri − r0i)

2 +
∑

angle i

kangle
i (θi − θ0i)

2

+
∑

dihedrals i

kdihed
i

{
[1 + cos (niφi − γi)] ni "= 0
(φi − γi)

2
ni = 0

+
∑

i

∑
j>i

4εij

[(
σij

rij

)12

−
(

σij

rij

)6
]

+
∑

i

∑
j>i

qiqj

4πεrij

Figure 1: The MD potential, where F = −∇U .

Small molecules that drive cellular processes can be studied using a variety
of techniques. In the Chemla lab, optical traps are used to apply and measure
forces acting on single molecules. In the Aksimentiev group, models of single
molecules can be manipulated in similar ways. We can apply and measure forces
with a computational technique called Molecular Dynamics (MD) simulation.

In MD simulations, molecules are treated as collections of point particles
which interact via a set of forces; Newton’s equation (F = ma) is integrated
to describe the temporal evolution of the system. MD simulations use a force
field, which is a set of equations and parameters that together determine how any
pair of point particles interact. The most popular force fields for MD simulation
describe biomolecules as collections of atoms which are connected by harmonic
bonds (two-body interactions), angles (three-body interactions) and dihedrals
(four-body interactions) and interact through the Coulomb and van der Waals
potentials. Given the positions and velocities for all the atoms in a system,
NAMD (the MD package that we will be using) calculates new positions and
velocities using the force on each atom with the equation in Figure 1.

Today, you will prepare a system for a steered molecular dynamics (SMD)
simulation of ssDNA and SSB, running briefly to ensure that everything worked.
Unfortunately, there is insufficient time to perform a long-timescale simulation,
so a final trajectories of an equivalent simulation is provided. You will then
perform simple analysis of the trajectory using VMD’s tcl interface.

This guide is a modified version of a complete tutorial, Introduction to
MD simulation of DNA-protein systems, which covers the basics of system
assembly and simulation with NAMD more extensively. The complete tutorial
introduces the reader to the MD method slowly and pays careful attention to
details This guide rushes through many of these details, so please ask if you
have questions!

http://bionano.physics.illinois.edu/Tutorials/
http://bionano.physics.illinois.edu/Tutorials/

2 SYSTEM SETUP AND SIMULATION IN GENERAL 4

2 System setup and simulation in general

In order to perform an MD simulations using NAMD, you must have at least
three files:

1. a PDB containing information about the coordinates and names of each
atom;

2. a PSF containing information that will later be used by NAMD to decide
what forces to apply to each atom, including the mass, charge, and atom
connectivity (bonds, angles, dihedrals and impropers), as well as the atom
type, which specifies van der Waals radius and depth; and

3. a NAMD configuration file that instructs NAMD what and how to run
the simulation.

SSB is known to bind ssDNA in two modes that depend on ion concentra-
tion: SSB35 and SSB65 [4]. The subscript denotes the approximate number
of nucleotides occluded in each mode. SSB35 binds ssDNA cooperatively, and
can form indefinitely long protein clusters; SSB65 binds ssDNA with limited
cooperativity. Both binding modes are believed to have functional roles in the
cell.

An x-ray structure containing two ∼ 30 basepair ssDNA fragments bound
to SSB was recently published [4]. The structure depicts a homotetramer with
folds that accommodate the DNA, which is held in place through a mix of base-
stacking and electrostatic interactions. Models of SSB35 and SSB65, made by ex-
tending the DNA fragments in the crystal structure, are shown in Fig. 2a and b.
Here we focus on SSB65, which is more prevalent at physiological ion concen-
trations.

You will study SSB by pulling on DNA bound to SSB to force its dissociation.
To be computationally economical, the DNA was pulled along an unusual axis
so that the DNA fit between periodic images of SSB when fully stretched. This
axis was chosen by trial and error, rotating the extended DNA and adjusting
the size of the unit cell until a suitable pathway was obtained. There may be
more thoughtful ways of picking an axis, but this is a one-time task and we
chose a quick, guess-and-check approach. This approach can be useful, but it is
generally better to use a simulation system that is large enough to accommodate
the DNA or to periodically truncate the excess DNA.

3 System assembly

A project typically begins with extensive review of the literature about the
system, in this case SSB (PDB accession code: 1EYG). Particular attention

http://www.rcsb.org/pdb/explore/explore.do?structureId=1EYG

3 SYSTEM ASSEMBLY 5

Figure 2: Models of ssDNA bound to SSB. (a) The ends of ssDNA bound
to SSB35 extend from opposite sides of SSB, allowing unlimited cooperativity.
(b) The ends of the ssDNA bound to SSB65 extend on the same side of SSB,
allowing only limited cooperativity. A method proposed to remove DNA from
SSB is illustrated with cartoon springs. The DNA is represented as light-blue
van der Waals spheres; the surface of SSB is shown in pink; K+ and Cl− are
shown as small brown and cyan spheres, respectively.

should be paid to any crystallographic articles reporting structures that will
provide the initial configuration of the system. It is good to carefully examine
the structure to obtain as complete an understanding of the protein as possible
before simulating; many trivial errors can be avoided early by doing so. For ex-
ample, protein structures may be missing residues (several missing residues in
the 1EYG structure were added through homology modeling before producing
ssb65.pdb). More subtly, a number of chemical modifications must be consid-
ered, including the protonation states of reactive residues (histidine, glutamate,
aspartic acid, lysine) and disulfide bonds between cysteine residues. In general,
these modifications depend on the local chemical environment of the amino acid
and are (at least historically) poorly predicted by available computational pack-
ages. Visual inspection of SSB reveals that none of it’s residues requires special
attention.

Protonation states. Ordinarily, the reactive residues of a protein

must be examined carefully to select appropriate placement of its

hydrogen atoms. This is because NAMD does not perform any

chemistry and cannot create or destroy covalent bonds.

To build the DNA system, you will first rotate the coordinates of the protein
and SSB to coincide with the steered-molecular dynamics (SMD) pulling axis.
Change directories to 1-pull-ssb. We have provided the PDB file ssb65.pdb,

3 SYSTEM ASSEMBLY 6

which was created by connecting DNA bound to SSB in a structure determined
through x-ray crystallography (PDB accession code: 1EYG). In VMD, source
the file load-extended-dna.tcl, which loads ssb65.pdb, rotates the coordi-
nates so that the DNA ends lie along the SMD axis, sets the size of the simu-
lation cell, writes the PDB ssb-oriented.pdb, and finally extends the ssDNA
fully along the SMD axis for subsequent visualization. The Periodic tab of
the Graphical Representations window enables you to show or hide periodic
images of DNA. Observe how the DNA will fit between the periodic images of
the protein. Note that we assume the DNA will lie along a line as it is re-
moved from the protein. This is approximately true at the rapid rate the DNA
is being pulled (150 Å/ns), but there may be unwanted interactions between
periodic images. As mentioned above, a better approach to this problem is to
truncate the DNA as the simulation progresses so that a small system can be
used. However, such an approach is difficult to do with NAMD and VMD and
is too advanced for this tutorial to cover.

Figure 3: Final system containing SSB35. The surface of water added with
the solvate plugin of VMD is shown transparently, and indicates the size of the
system as well as the size of the solvation shell from Grubmüller’s Solvate. Ions
are shown as light green and blue vdW spheres. The protein is shown using an
orange surface, and the DNA is shown with in cyan with atomic detail.

3 SYSTEM ASSEMBLY 7

The system must be constructed in steps, beginning with the coordinates for
the protein and DNA in ssb-oriented.pdb. The first step is to build a PSF
and PDB for the protein and DNA, which will include atoms that were missing
from the original PDB (e.g. hydrogen atoms) and add information from the
force-field such as the charge. Ordinarily this can be done fairly easily using the
graphical AutoPSF plugin of VMD. However, this guide uses the latest version
of the CHARMM force-field (CHARMM36), which uses a new patch to convert
the default RNA into DNA (more on this later) that breaks the current version of
AutoPSF. Thus, this tutorial will guide you through writing a simple Tcl script
that is sourced from within VMD to produce the structures. In general, such
scripts are more flexible than the built-in graphical interfaces, and also leave a
precise record of how your system was built. The build process resembles that
depicted in Fig. 4.

There are three online resources that are particularly useful when writing
Tcl scripts for VMD:

1. The Tcl Reference Manual (http://tmml.sourceforge.net/doc/tcl/), which
contains information about Tcl commands,

2. the Tcl Text Interface section of the VMD user’s guide
(http://www.ks.uiuc.edu/Research/vmd/current/ug/node116.html), which
explains the extra Tcl commands understood by VMD, and

3. the psfgen User’s Guide (http://www.ks.uiuc.edu/Research/vmd/plugins/psfgen/ug.pdf),
which describes how the psfgen plugin of VMD can be used.

Psfgen

The first step towards writing a PSF using a script is to tell VMD to use
the psfgen plugin with the command package require psfgen. Now, all the
psfgen commands are available to the script. The next step is to read in the
force-field topology files. These contain information about the atoms in each
protein residue or nucleotide, including how they are bonded, what charge they
have, and what “types” of atoms they are (this last bit of information is used by
NAMD in conjunction with the force-field’s parameter file to determine what
forces to apply). The topology files can be read with the psfgen command
topology path/to/file.rtf . Your topology files are located in the directory
charmm36.nbfix. Make your script load all the files with the .rtf extension.
Finally, make your script load the PDB into VMD with the command mol new

ssb-oriented.pdb

Now VMD and psfgen are ready to build your protein. This is done piece-
by-piece using contiguous “segments” of bonded atoms. For example, SSB is a
homotetramer comprised of four (identical) monomers, and each monomer will

http://tmml.sourceforge.net/doc/tcl/
http://www.ks.uiuc.edu/Research/vmd/current/ug/node116.html
http://www.ks.uiuc.edu/Research/vmd/plugins/psfgen/ug.pdf

3 SYSTEM ASSEMBLY 8

Figure 4: An overview of the system assembly process. A typical compart-
mentalized system assembly script is depicted. The script was written to evoke
explicitly named Tcl procedures that serve as logical wrappers. From top left,
clockwise: the system is shown in its initial state, containing protein and DNA
with no hydrogen atoms; structured water is added to the DNA and protein
using Grubmüller’s Solvate program (distinct from VMD’s Solvate plugin); the
DNA bound to the protein is cut into small pieces that are randomly distributed
through the system; VMD’s solvate plugin is used to add water that isn’t too
close to the protein; excess solvent is removed so that the system is a cube; the
protein and DNA charge is neutralized as counterions and coions are added to
the system at ∼ 1 M concentratoin using the autoionize plugin of VMD (which
also has a graphical interface).

http://www.mpibpc.mpg.de/home/grubmueller/downloads/solvate/index.html
http://www.ks.uiuc.edu/Research/vmd/plugins/solvate/

3 SYSTEM ASSEMBLY 9

have its own segment. In preparation for adding the segment to psfgen (which
has its own memory of the molecule that you are building that is completely
separate from the molecules loaded into VMD), your script should write a PDB
for the first segment.

This can be done in a few lines by first creating an “atom selection” with
set sel [atomselect top "protein and chain A"]. Here, the atom selec-
tion text, “protein and chain A” works just like it would in the Graphical
Representations window and selects one of the monomers of our protein. The
atomselect command returns a unique label that can be used as a Tcl command
to query or manipulate the selected atoms. When a Tcl command is contained
in square brackets, the command is executed and the bracketed-command is
substituted with whatever it returns, in this case the unique atomselect label
(something like atomselect0 or atomselect1). The code above saved that label
in the variable sel (this could be called anything) for later use. Usually a PDB
from the Protein Data Bank does not have its up-to-four-letter segment de-
fined, but this is crucial for psfgen. The command $sel set segid APRO sets
the segment name to “APRO” for the selected atoms. Finally $sel writepdb

tmp.pdb writes the PDB file from the molecule loaded in VMD. Add the three
lines described above to your script.

Psfgen has its own memory of the molecules that you are building, and this
memory is completely separate from VMD’s. Adding or deleting molecules from
VMD does not affect psfgen. Similarly, psfgen commands do not alter VMD’s
state. Thus each monomer must be added to psfgen’s picture of the structure
using the command:
segment unique-segname {

code-specify-residues-in-segment

}
The code argument to segment usually contains one psfgen command, pdb

tmp.pdb, that tells psfgen to extract the bonded information for the segment
from a PDB. Note that segment command not load coordinates into psfgen,
which must be done after the segment command using coordpdb tmp.pdb.

At this point, psfgen should have your the first segment molecule in its
memory! You can repeat the above steps explicitly writing tmp.pdb for the
each segment using VMD before adding it to psfgen for the four monomers
using suitable atom-selection text. Alternatively, you can generalize your script
a little and use a foreach loop to repeat the same code for the different chains.
This might look like the following:
set sel [atomselect top protein]

set chains [lsort -unique [$sel get chain]] ;# return A B C D

foreach chain $chains {
puts "Adding chain $chain to psfgen"

3 SYSTEM ASSEMBLY 10

set seg ${chain}PRO
set sel [atomselect top "protein and chain $chain"]

$sel set segid $seg

$sel writepdb tmp.pdb segment $seg { pdb tmp.pdb }
coordpdb tmp.pdb

}
The only new commands are Tcl commands, like lsort, which sorts a list (lists
are whitespace delineated in Tcl) optionally returning only unique entries, and
foreach, which executes the loop code once for each element of the list $chains
after setting the variable chain to the value of that element.

Now, write a similar block of code to include the DNA in your structure. At
this point, if you wrote the PSF and PDB from psfgen’s memory, you would end
up with RNA, and not DNA. Between the segment and coordpdb commands
for the DNA, you should “patch” the RNA to turn it into DNA. This is very
easy, but requires a loop over each DNA nucleotide. First, create a list of resids
with set resids [lsort -unique [$sel get resid]]. Then loop over those
resids with something like foreach r $resids { ... } Inside that loop, apply
the patch to the nucleotide “DEOX”1 with patch DEOX $seg:$r . In addition
to specifying the bonds, the PSF specifies which atoms should have angles and
dihedral angles applied. Unfortunately, the patch statements do not usually
specify these correctly, so after applying patches, you should always provide the
psfgen command regenerate angles dihedrals to automatically reinsert the
angles and dihedrals in the PSF.

At this point, the PSF is almost complete. However, the tmp.pdb files
did not include all the atoms in the structures (namely hydrogen atoms were
missing, as is usually the case). Before you write the structure, you should tell
psfgen to use the “internal coordinates” specified in the topology file to place the
missing atoms in reasonable positions by issuing the command: guesscoords.
Finally, you are ready to write the PSF and PDB from psfgen’s memory using
the commands writepsf psfgen.psf and writepdb psfgen.pdb (of course
name these files whatever you would like).

Go ahead and source your script from within VMD with source psfgen.tcl

from the Tk Console. Make sure you look at the resulting structures for anything
unusual; this is the trickiest part of building a structure!

3.1 Solvent

The next step is to add water to the system. In general, it is a good idea to
first use Grubmüllers solvate to add structured water around a protein, but we
will forego this step since it requires installation additional external software.

1this patch is defined in the topology file for nucleic acids and changes the RNA structure
currently in psfgen’s memory into DNA

http://www.mpibpc.mpg.de/grubmueller/solvate

3 SYSTEM ASSEMBLY 11

Careful placement of water. The structure of water can be

influenced 10 Å from a surface, and in this way can act as an ex-

tension of the protein. Moreover, the structure of the water around

a protein can stabilize its conformation. We typically use a pair of

programs called Dowser and Grubmüller’s Solvate (accessed from

the command line with dowserx and solvate) to place individual

water molecules in energetically favorable locations near the protein

in cavities and on the surface, respectively. Note that Grubmüller’s

Solvate is distinct from the solvate plugin of VMD, which places

pre-equilibrated water without considering the interaction between

the water and the protein. Both programs are executed prior to

creation of the protein structure file. To make this tutorial more

portable, these steps have been omitted. However, we recommend

employing those pieces of software when building protein systems

for production simulations.

Unstructured solvent can be added using the VMD’s graphical Solvate plu-
gin, but you can also add two lines to your psfgen.tcl script as follows:
package require solvate

solvate psfgen.psf psfgen.pdb -minmax "{-57.5 -57.5 -75} {57.5 57.5

75}" -o solvate

The numbers in minmax specify the extent to which the solvent should reach,
and have been chosen to allow the DNA to move between periodic images of
SSB. The usual choice should provide at least 20 Å between periodic images
(the structure of water can be affected up to 10 Å from the surface of a pro-
tein!) and at least two Debye-lengths (the characteristic length at which ions
screen electrostatic interactions, ∼ 10 Å in 100 mM monovalent electrolyte such
as NaCl, ∼ 3 Å in 1 M).

Sometimes solvate adds a little too much water, and needs to be trimmed.
This doesn’t appear to be the case for the 110 Å box used in this tutorial, but
you can consult section 2.2 of the psfgen User’s Guide for detailed instructions
should this problem ever arise.

DNA is highly charged (one negative electron charge per phosphate). Coun-
terions are expected to, more-or-less, neutralize the DNA within a couple of
Debye-lengths, so the system should be neutralized before additional ions are
added to the appropriate concentration. This is very easily achieved using the
graphical Autoionize plugin of VMD, which also has a convenient scripting in-
terface. You can make your script add 1 M with the following commands (the
-sc option specifies the desired molarity):
package require autoionize

autoionize -psf solvate.psf -pdb solvate.pdb -sc 1 -o ssb-dna

http://www.ks.uiuc.edu/Research/vmd/plugins/psfgen/ug.pdf

4 SIMULATION 12

If you added the solvate and autoionize commands to your script, open
VMD and source your script with source psfgen.tcl to execute all the com-
mands. Load the resulting structure and make sure everything looks okay.
Check that the system is neutral with the following command: measure sumweights

[atomselect top all] weight charge. The measure command provides a
lot of really useful functionality to VMD, especially for analysis of simulation
trajectories.

The final step is to flag atoms to apply force using SMD and movingCon-
straints. A script is provided that does this called constrainDNA.tcl. Look at
the file and make sure you know what it does. Then source the file from the Tk
Console.

4 Simulation

Simulations can be performed in the NPT (constant number of atoms, pressure,
temperature), NVT (constant number of atoms, volume, temperature), or NVE
(constant number of atoms, volume, energy) thermodynamic ensembles. Water
is a nearly incompressible fluid, so small changes in the volume cause large
changes in the pressure. When building a system, it is almost impossible to
obtain a pressure close to atmospheric without simulating in the NPT ensemble.
On the other hand, external forces (which in general do not conserve momentum)
interact badly with the barostat.

A good approach is to first run a short NPT simulation without external
forces until the volume of the system stops changing, then use the volume ob-
tained in the NPT simulation to start an NVT simulation using the correct
system size. In this case, the terminal nucleotides must lie along the steered-
molecular dynamics (SMD) pulling axis at the onset of the SMD simulation.
Because the DNA ends may drift away from their initial positions in the NPT
simulation, it is best to start the NVT simulation using the original coordinates
rather than the NPT simulation’s restart coordinates.

The solvent at the edges of the system may have clashes or small gaps that
send shock-waves that perturb the solute conformation. Thus it is best to per-
form initial equilibration in the NVT simulation with the solute conformation
restrained (constrained in NAMD terminology). Once, the system is equili-
brated, SMD simulation can begin.

The NPT simulation has already been performed on your behalf. When
starting the NVT simulation, you could just use the “extended system” restart
file (.xsc), but the volume (and pressure) in the NPT simulation fluctuate.
A better approach is to find the average the volume during the NPT sim-
ulation, and scale your cellBasisVectors accordingly. From the Tk Console,
run the following command to extract the average system volume: source

5 ANALYSIS 13

averageVolume.tcl.
Enter the correct cellBasisVectors into ssb-nvt.namd and run this locally.

This simulation will equilibrate your system with “constraints” (really restraints,
but NAMD syntax is not always precisely descriptive) and SMD forces defined
(but a value of 0 for the SMD velocity so the ends are merely held in place).
Note that the cellBasisVectors are a little smaller than the initial size of the sys-
tem, and water around the edges will be roughly twice the nominal density when
you begin the NVT simulation. Using the speed of sound in water (1500 m/s)
to estimate the timescale required for the uneven water density to propagate
through the system, you should simulate at least 6.6 ps per 100 Å. While this
simulation runs, have a careful look at ssb-nvt.namd and ssb-smd.namd to
make sure you understand the configuration files well. Don’t hesitate to ask
questions about the various options.

Once the simulation is finished, you should run ssb-smd.namd for a moment
to ensure that everything works. ssb-smd.namd is the same as ssb-nvt.namd,
except it uses an SMD velocity of 150 Å/ns and uses the system volume from
the restart.xsc file if the ssb-nvt simulation.

5 Analysis

Load and examine the SMD simulation trajectory in VMD (mol new complete/ssb.psf2;

mol addfile complete/output/ssb-smd.dcd in the Tk Console). Watch how
the DNA dissociates from SSB.

In the limit of slow pulling, you can safely assume that the force due to
movingConstraints is the same as the force due to SMD. In the provided
simulation trajectory, the pulling velocity was extremely fast, and the above as-
sumption may not hold Although this may not hold because the pulling velocity
was extremely fast in the provided simulations, The only reliable way to extract
the force due to movingConstraints is to use VMD to track the position of the
C1′ atom. However, for simplicity we will assume the movingConstraints and
SMD forces have equal magnitudes.

The SMD force can be extracted from a NAMD log file using any number of
scripting languages or utilities. If you are comfortable with a particular scripting
language (e.g. awk, Perl, or Python), feel free to extract the force from the log
file using that language. Presently, you will be guided through this task using
Tcl.

The line you are trying to copy from the log file looks like this: SMD 0

-2.88316 26.5742 -33.5497 150.378 261.271 -3359.08. This line has the
format: “SMD timestep posX posY posZ forceX forceY forceZ”. Create a new

2The provided trajectory was built with an old version of the solvate plugin and has a
different number of atoms

5 ANALYSIS 14

tcl script called, getForce.tcl. First of all, set a variable to the axis direc-
tion as follows set axis [vecnorm "92 115 60"]. vecnorm is a handy VMD
command that normalizes a vector. In this file, use the Tcl command set ch

[open complete/output/ssb-smd.log] to open the file for reading. The open

command returns a unique channel ID, which you set to the ch variable. The
command gets $ch line will read a line from the file, setting it to the variable
line and returning the number of characters on the line, or −1 if it reached the
end of the file.

To step through the file, you can use a while loop, which executes a condi-
tional statement and then executes the loop code as long as the conditional state-
ment was true (0 in Tcl). For example, while { [gets $ch line] >= 0 } {
puts $line } would simply copy the contents of the file to the Tk Console.
Inside the loop, you must write code that checks if the line begins with “SMD ”
(note the extra space prevents the line beginning “SMDTITLE” from being
printed).

The easiest way to do this is with a very simple regular expression.3 Use
an if statement and the command regexp "^SMD " $line to only print lines
that begin with “SMD ”. Check to see if it works in the Tk Console by sourcing
your script.

There are several ways to extract the relevant information, but probably the
easiest employs the lassign command to set each whitespace delineated word
in the line to a variable. Use this technique to get the vector form of the force.
By taking the dot product4 between the force vector and the axis of pulling,
you can obtain the magnitude of the force. Test to see if this works. The units
of force printed by SMD are given as kcal/mol Å, but the multiplicative factor
69.48 can be used to convert to piconewtons. To do math in Tcl, you must
enclose the mathematical expression a special command like this: set result

[expr 1*4]. Use this information to convert your force to piconewtons.
Now that you have a basic script, you can open a file for writing (rather

than reading as we have just done) using the command set outCh [open

outfile.dat w]. It doesn’t matter whether the file was pre-existing, but open-
ing a file like will erase its contents. Subsequent commands like puts $outCh

"some text or data" will print “some text or data” into outfile.dat.
Thus, you can print the magnitude of the force along the SMD axis inside

the loop to a data file of your choosing. Finally, after the close of the while loop,
you should close both of the open file channels with the close $ch command.
Now have a look at the resulting forces using your favorite plotting software!

3Regular expressions are implemented in many scripting languages and
provide a powerful method for querying and manipulating text. See
http://www.tcl.tk/man/tcl8.4/TclCmd/re syntax.htm for more information about reg-
ular expressions in Tcl.

4vecdot $v1 $v2 where $vN is a list of numbers like "1.0 0.0 0.0"

http://www.tcl.tk/man/tcl8.4/TclCmd/re_syntax.htm

REFERENCES 15

Note that you will need to employ heavy smoothing to see the signal emerge
from the noise. The force that you obtain should be quite large. This is because
the pulling velocity was extremely rapid. At a slower rate of 1 Å/ns, the force
is on the order of 100 pN, which is still much larger than the forces obtained in
experiment. If you have time, modify your script to print the work performed
by the SMD spring.

As a side note, if you were to perform this simulation many times, you would
be able to apply Jarzynski’s equality [3] to obtain an estimate of the free energy
change in removing the DNA from SSB from the work performed during the
non-equilibrium trajectories.

e−β∆F = e−βW

The bar denotes an ensemble average; β denotes 1/kBT; ∆F is the change in
free energy when the system is brought from one state to another; W is the
work done during the change of state. Jarzynski’s equality is a relatively recent
development in statistical mechanics that has be experimentally validated. We
find this development significant because it relates work performed during a non-
equilibrium process (performed many times) to an equilibrium property of the
system. There are other ways of obtaining free energies from MD simulations,
including umbrella sampling, adaptive biasing force, and metadynamics. but
we highlight Jarzynski’s equality because it has applications in both experiment
and simulation.

References

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molec-
ular Biology of The Cell. Garland Science, New York & London, 4th edition,
2002.

[2] E. V. Bocharov, A. G. Sobol, K. V. Pavlov, D. M. Korzhnev, V. A. Jaravine,
A. T. Gudkov, and A. S. Arseniev. From structure and dynamics of protein
L7/L12 to molecular switching in ribosome. J. Biol. Chem., 279:17697–
17706, 2004.

[3] C. Jarzynski. Nonequilibrium equality for free energy differences. Phys. Rev.
Lett., 78:2690–2693, 1997.

[4] S. Raghunathan, A. Kozlov, T. Lohman, and G. Waksman. Structure of the
DNA binding domain of E. coli SSB bound to ssDNA. Nat. Struct. Mol.
Biol., 7(8):648–652, 2000.

REFERENCES 16

[5] W. Rosche, A. Jaworski, S. Kang, S. Kramer, J. Larson, D. Geidroc,
R. Wells, and R. Sinden. Single-stranded DNA-binding protein enhances
the stability of CTG triplet repeats in Escherichia coli. J. Bacteriol.,
178(16):5042–5044, 1996.

	Introduction
	System setup and simulation in general
	System assembly
	Solvent

	Simulation
	Analysis

