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DNA code 1s written 1n atoms

backbone

Highly charged: 2 electron charges per 0.32nm

.

Double stranded DNA The sequence has direction: Single stranded DNA
(persist. length ~50nm) 5'-AAGCTGGTTCAG-3’ (persist. length ~1.5nm)
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DNA code 1s written 1n atoms

backbone

J P \’ / i
Double stranded DNA The sequence has direction: Single stranded DNA
(persist. length ~50nm) 5'-AAGCTGGTTCAG-3’ (persist. length ~1.5nm)
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The sequence contains biological

mformatlon

lac operon

Central dogma of
molecular biology

The thsmal properties enable functionality
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Molecular dynamics simulations,
a computational (force) microscope

Massive parallel computer Atoms move according to

Blue Waters, ~200,000 classical mechanics (F= ma)

h . I.__. . ﬂlnl.. . : ..J %

Time scale: ~0.1-100 us Interaction between atoms 18
Length scale: 10K - 100M defined by molecular force field

atoms or (< 50 nm)3
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DNA systems

Chromatin and Condensed Chromosome Structure

Solenoid EACIEYE

Chromatin _

Condensed
Figure 1 Chromosome
http://micro.magnet.fsu.edu/cells/nucleus/chromatin.htmi Graphene nanopore sequencing

DNA replication
and repair
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Micromechanics ot single DNA
molecules
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Stretching ssDNA with external force

AFM probe (SizNy) 300
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Stretching dsDNA

Periodic boundary DNA is effectively
conditions 1n 3D infinite

P,, < O stretches the system in Z direction.

Applied force simulations Simulations using anisotropic pressure control
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Different modes of dsDNA stretching

Torsionally constrained: DNA pops, force-extension curve is non-monotonous

[Luan and Aksimentiev, PRL 101:118101 (2008)
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Visualizing MD Results:
Mechanical Properties of dsDNA Mini Tutorial

Jejoong Yoo

Part 2. Stretching dsDNA Part 3. Stretching Nicked DNA
(torsionally constrained) (torsionally unconstrained)
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Interesting physical properties

F : : F
Same sign charges repel
(in vacuum)
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Direct MD simulation of DNA-DNA force

J. Am. Chem. Soc. 130, 15754 (2008)
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Simulations of side-by-side DNA repulsion are
in good agreement with experiment

N BD :
Magnets = ' -
E ] ¢ 20 \ N\ -
xperiment: h = [M'\ § & e |
: 5 WA A . R . 0-0300mMm
Ralf Seidel (Dresden) 215 X\ \ A % ~
=0 o TR - " l
DNA ful LMRSS AN n =
Ep %—" P 1 L " ~ - '1\1'- -H E . -
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Phys. Rev. Lett. 105, 158101 (2010) DNA-DNA separation (nm)

In monovalent electrolytes, the effective charge of dsDNA is
about 41% of its nominal charge
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MD simulation of dense DNA arrays

Seethaler, et al.

What we control What we measure

DNA density (or harmonic Pressure as a function of [ion]

constraint radius) & [DNA]
[Na*],,,;~ 200 mM DNA / ion distribution:
[Mg*],,¢~ 0 or 20 mM DNA / ion diffusion inside the
array

Water / salt free

Cylindrical harmonic

constraint (radius of 10 — 12 ," i

nm) only against DNA
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Pressure /bar

Pressure /bar

The standard MD force field fails to predict
internal pressure of a DNA array
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Too strong Na/Mg-phosphate attraction induces
artificial DNA clusters!! [Na] ~ 4M!!

* Rau, D. C.; Lee, B.; Parsegian, PNAS (1984)

Wednesday, November 27, 13




Recalibrate ion-DNA parameters using
osmotic pressure data

permeable only

to water
 Osmotic pressure is directly
5 related to ion-pair
x .
O formation: it = ¢cRT
Y2
C
- X
™
. * Pros: modify only ion-DNA
N phosphate interaction,
~ s without altering ion-water
E . — . .
S o8t interaction.
2 06l — Acetate _ .
2 o4l Water ] * Cons: nothing.
% 0'2_ — Total
a 7 ~ ——— — |
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Improved parametrization of ion-DNA
Interactions

[IMg], s~ 20 mM
[Na], s~ 200 mM

Pressure /bar
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Short dsDNA fragments form
end-to-end aggregates

Experimental evidence of end-to-end
aggregation of short dsDNA fragments
motivated simulations to determine
whether aligned DNA fragments would
collapse to an end-to-end assembly.
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Proper connection requires a terminal phosphate

c3’ P,
c3— 1P,
P, 3
P, 3
C3’ |
C3’ P,
P| [ _63"
P c3’
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Further simulation reveals the strength of
the end-to-end DNA 1nteraction

Nucleic Acids Research 40:3812 (2012)

[ The assembly proved stable in )

the absence of restraints during
600 ns of simulation.

a )
Steered molecular dynamics gave a

rupture pathway involving shearing
of the DNA ends

‘Umbrella sampling revealed that |
the free energy for the
interaction is ~6.5 kcal/mol
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Standard binding free-energy of end-to-
end assembly

a) Gu, on, r=r* Greuxt Grt—p Gu, off, b
- An end-to-end
5 assembly forms

- \_ —9.1 kcal/mol

i
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r— 00

Restraints are | ,-': ( Ear apart DNA | !,
placed on DNA I fragments are ;
t | 4.7 kcal/mol } ; brought to 19 A
\_ 0.8 kcal/mol /.

'? iy Restraints are |
A released
% 2.6 kcal/mol

Result: Gping =-6.3%1 kcal/mol for a DNA concentration of 1 M in 0.12 NaCl

Ghind = Gu, on, r=r + Gpx vt + Gri_p + G, off b
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Simulation of DNA aggregation

A simulation of 458 DNA fragments ("'561
mM) allowed observation of unbiased
end-to-end aggregation
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Assuming aggregation kinetics are
independent of aggregate length, we
extract kinetic rates to obtain an
independent estimate of G, 4
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Significance of end-to-end interaction
depends on concentration of DNA ends

Nucleic Acids Research 40:3812 (2012)
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binding free energy (kcal/mol)
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Free energy of end-to-end

assembly is DNA
concentration dependent:
1.4 kcal/mol for every 10-fold

drop in concentration
. Y,

( High concentration of short b
DNA fragments results in

aggregation and subsequent

formation of liquid crystals

ended cyclization

N
Concentration of DNA ends is
too small for significant blunt-

Vs

End-to-end adhesion may aid
repair of double-stranded DNA
breaks, since the DNA ends are

held in proximity

\_ J

4 )
X-ray scattering indicates

overall attraction
DNA fragments in divalent
electrolyte
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User-Detfined Forces in NAMD

Maxim Belkin
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Estimated completion time: ~ 2 hours/section

1clBC and TclForces: basic knowledge of Tc/
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Mitosis and DNA replication

* Mitosis requires replication of a genome

 DNA replication occurs at a replication fork
(replisome)

e Can be highly processive: 2900 bases/min
(eukaryotes)

1000 bases/s in E. coli

Adapted from Mol. Cell 23:155

Enzymes common to all replisomes:
Helicase
Primase

Ligase (not depicted)
Sliding clamp and clamp loader
ssb

Alberts, Molecular Biology of the Cell, fifth edition
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SSB protects single-stranded DNA

Prevents formation of secondary structure, enzymatic digestion,

C

Sing

nemical modification

e-stranded DNA binding protein (SSB) can bind 35 or 65

nucleotides of ssDNA (SSB,. and SSB:) with high affinity

Adapted from , Mol Cell 23:155

Problem: how is SSB removed when it is no longer needed?
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Diffusion of ssb along DNA

reptation rolling

What is the microscopic
mechanisms of SSB

diffusion?

How does dissociation of
DNA from SSB occur?

What makes an ssb an ssb?

T Ha group, Nature 461:1092
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A model is build from an x-ray crystal
structure

KCI
water

PDB:1EYG

Unresolved DNA was modeled by the crystallographers (Lohman and Waksman groups,
Washington U. School of Medicine) and provided to us via Ruobo Zhou of the Ha group.
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Individual nucleotides are loosely
bound to SSB
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Mechanics of ssb-DNA (dis)assembly

k, | |k,

Black -theoretical prediction

1 0 I Red —in the absence of SSB
Blue —in the presence of SSB
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Chemla group, unpublished
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All-atom simulations cannot quite
reach experiment

:

o |
! I s I T | l T Forces or§1 -2 orders

of magnitude larger

200 % than in experiments
=z L
= Little hope of
ﬁ 100 - WX observing diffusion-
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Coarse-grained modeling connects with

Coarse-grained models of and single-
stranded DNA binding protein (SSB) were
developed from all-atom simulation
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Simulation -&
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XSSDNA

€ SSB binds

5 - W\M
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‘r Chemla group
0
0

10 20
force (pN)

Excellent agreement was obtained between
experiment and simulation suggesting that SSB
binds DNA dynamically

experiment

Future Goal: Extend model to include base sense and protein—
protein interactions to enable diverse studies of the mechanisms of
DNA replication and repair, including the following

SSB saturates DNA during replication;
the effect of protein—protein interactions
on the structural and dynamical
properties remain unexplored

N

RecA efficiently displaces tightly-bound
SSB molecules from ssDNA—likely an
important capability for efficient repair—
but the mechanism is elusive

558 diffusion

RecA-ATP

Ei filament
N Rect-ATP filament

Ha group — Nature 461:1092

Replication fork

£

DNA helicase

primase

clamp . )“\v

adapted from Mol Cell

SSB

RecA mediates strand exchange during
DNA repair, but must efficiently displace
tightly-bound SSB molecules from
ssDNA, but the mechanism is elusive

'$44
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SSB parameterization

Obtain density of all-atom nucleotides Apply iterative Boltzmann inversion using CG
ssDNA to obtain the interaction potential that
makes the AA and CG densities match
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SSB represented through moving grids

The CG ssDNA can interact with atomically-detailed SSB using Gridforces in NAMD.

Problem: global rearrangements of CG DNA are still slow, and dynamics of SSB-DNA
interaction is unrealistic

Solution: modify NAMD to make grids move in response to forces and
torques. Langevin forces and torques are also applied.
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DNA (1-site/nt) + SSB simulation trajectory

This simulation is ~400 ns, but smoothed potentials make the kinetics equivalent to ~20 ps.
We obtain ~1 pys/day with 1-site model on two processors with 200 nucleotides and one SSB.
2-site SSB parametrization is underway.
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Atomistic mechanics of single-stranded
DNA Binding-Protein

Scripting system assembly
for protein-DNA systems with latest force-field
Difficult!

1

Chris Maffeo

Pulling SSB

Moderately difficult
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