Close encounters with DNA

Aleksei Aksimentiev Department of Physics University of Illinois at Urbana-Champaign

WHAT IS LIFE?

The Physical Aspect of the Living Cell

BY

ERWIN SCHRÖDINGER

SENIOR PROFESSOR AT THE DUBLIN INSTITUTE FOR ADVANCED STUDIES

> Based on Lectures delivered under the auspices of the Institute at Trinity College, Dublin, in February 1943

4339 CAMBRIDGE AT THE UNIVERSITY PRESS 1948

http://www.accessexcellence.org/AB/GG/chromosome.html

Double stranded DNA (persist. length ~50nm)

The sequence has direction: 5'-AAGCTGGTTCAG-3'

Single stranded DNA (persist. length ~1.5nm)

DNA code is written in atoms

Highly charged: 2 electron charges per 0.32nm

Double stranded DNA (persist. length ~50nm)

The sequence has direction: 5'-AAGCTGGTTCAG-3'

Single stranded DNA (persist. length ~1.5nm)

The physical properties enable functionality

Molecular dynamics simulations, a computational (force) microscope

Massive parallel computer Blue Waters, ~200,000

Atoms move according to classical mechanics (F= ma)

<u>Time scale</u>: ~ 0.1-100 μs <u>Length scale</u>: 10K - 100M atoms or (< 50 nm)³ Interaction between atoms is defined by molecular force field

DNA systems

Graphene nanopore sequencing

Wednesday, November 27, 13

Stretching ssDNA with external force

Stretching dsDNA

Applied force simulations

Simulations using anisotropic pressure control

Different modes of dsDNA stretching

Nicked: force increases gradually as DNA unwinds

Torsionally constrained: DNA pops, force-extension curve is non-monotonous

Luan and Aksimentiev, PRL **101**:118101 (2008)

Wednesday, November 27, 13

Visualizing MD Results: Mechanical Properties of dsDNA Mini Tutorial

Interesting physical properties

Effective attraction between DNA is observed when counterions have charge ≥ 2e

DNA lives in water and is surrounded by counterions

Direct MD simulation of DNA-DNA force

J. Am. Chem. Soc. 130, 15754 (2008)

A virtual spring measures the effective force

Simulations of side-by-side DNA repulsion are in good agreement with experiment

In monovalent electrolytes, the effective charge of dsDNA is about 41% of its nominal charge

MD simulation of dense DNA arrays

Seethaler, et al.

What we control

DNA density (or harmonic constraint radius) [Na⁺]_{buf} ~ 200 mM [Mg²⁺]_{buf} ~ 0 or 20 mM What we measure

Pressure as a function of [ion] & [DNA] DNA / ion distribution: DNA / ion diffusion inside the array

Cylindrical harmonic constraint (radius of 10 – 12 nm) only against DNA

The standard MD force field fails to predict internal pressure of a DNA array

Interaxial distance /nm

Too strong Na/Mg-phosphate attraction induces artificial DNA clusters!! [Na] ~ 4M!!

* Rau, D. C.; Lee, B.; Parsegian, PNAS (1984)

Pressure /bar

Pressure /bar

Recalibrate ion-DNA parameters using osmotic pressure data

permeable only

Distance from center (nm)

- Osmotic pressure is directly related to ion-pair formation: π = φcRT
- Pros: modify only ion-DNA phosphate interaction, without altering ion-water interaction.
- Cons: nothing.

* Luo & Roux, JPCL (2009)

Improved parametrization of ion-DNA interactions

Interaxial distance /nm

Short dsDNA fragments form end-to-end aggregates

Experimental evidence of end-to-end aggregation of short dsDNA fragments motivated simulations to determine whether aligned DNA fragments would collapse to an end-to-end assembly.

Chris Maffeo

Proper connection requires a terminal phosphate

Further simulation reveals the strength of the end-to-end DNA interaction

Nucleic Acids Research 40:3812 (2012)

The assembly proved stable in the absence of restraints during 600 ns of simulation. Steered molecular dynamics gave a rupture pathway involving shearing of the DNA ends

Umbrella sampling revealed that the free energy for the interaction is ~6.5 kcal/mol

Standard binding free-energy of end-toend assembly

Simulation of DNA aggregation

Significance of end-to-end interaction depends on concentration of DNA ends

Nucleic Acids Research 40:3812 (2012)

Estimated completion time: ~ 2 hours/section *TclBC* and *TclForces*: basic knowledge of *Tcl*

Wednesday, November 27, 13

Mitosis and DNA replication

- Mitosis requires replication of a genome
- DNA replication occurs at a replication fork (replisome)
- Can be highly processive: 2900 bases/min (eukaryotes)
- 1000 bases/s in *E. coli*

Adapted from Mol. Cell 23:155

Enzymes common to all replisomes: Helicase Primase Polymerase Ligase (not depicted) Sliding clamp and clamp loader ssb

Alberts, Molecular Biology of the Cell, fifth edition

SSB protects single-stranded DNA

Prevents formation of secondary structure, enzymatic digestion, chemical modification

Single-stranded DNA binding protein (SSB) can bind 35 or 65 nucleotides of ssDNA (SSB₃₅ and SSB₆₅) with high affinity

Problem: how is SSB removed when it is no longer needed?

Diffusion of ssb along DNA

⁺ Ha group, Nature 461:1092

A model is build from an x-ray crystal structure

Unresolved DNA was modeled by the crystallographers (Lohman and Waksman groups, Washington U. School of Medicine) and provided to us via Ruobo Zhou of the Ha group.

Individual nucleotides are loosely bound to SSB

Wednesday, November 27, 13

Mechanics of ssb-DNA (dis)assembly

All-atom simulations cannot quite reach experiment

Coarse-grained modeling connects with experiment

Coarse-grained models of and singlestranded DNA binding protein (SSB) were developed from all-atom simulation

Excellent agreement was obtained between experiment and simulation suggesting that SSB binds DNA dynamically

10

force (pN)

Future Goal: Extend model to include base sense and proteinprotein interactions to enable diverse studies of the mechanisms of DNA replication and repair, including the following

SSB saturates DNA during replication; the effect of protein-protein interactions on the structural and dynamical properties remain unexplored

RecA efficiently displaces tightly-bound SSB molecules from ssDNA-likely an important capability for efficient repairbut the mechanism is elusive

RecA mediates strand exchange during DNA repair, but must efficiently displace tightly-bound SSB molecules from ssDNA, but the mechanism is elusive

Replication fork

helicase

clamr

adapted from Mol Cell

SSB

SSB parameterization

Obtain density of all-atom nucleotides

Apply iterative Boltzmann inversion using CG ssDNA to obtain the interaction potential that makes the AA and CG densities match

SSB represented through moving grids

The CG ssDNA can interact with atomically-detailed SSB using Gridforces in NAMD.

Problem: global rearrangements of CG DNA are still slow, and dynamics of SSB–DNA interaction is unrealistic

Solution: modify NAMD to make grids move in response to forces and torques. Langevin forces and torques are also applied.

DNA (1-site/nt) + SSB simulation trajectory

This simulation is ~400 ns, but smoothed potentials make the kinetics equivalent to ~20 μ s. We obtain ~1 μ s/day with 1-site model on two processors with 200 nucleotides and one SSB. 2-site SSB parametrization is underway.

Atomistic mechanics of single-stranded DNA Binding-Protein

Jeff Comer Maxim Belkin Rogan Carr David Wells Anthony Ho Binquan Luan (IBM) Grigori Sigalov Swati Bhattacharya Chris Maffeo Jejoong Yoo Manish Shankla

Chen-Yu Lu

Karl Dekker

Shu-Han Chao

TeraGrid"

Acknowledgements

Takjip Ha Hajin Kim (UIUC)

J Gundlach Ian Derrington (UW Seattle)

Experiment:

Center for the Physics of Living Cells

Cees Dekker

Magnus Jonsson

(TU Delft)

VMD and NAMD

os DoD Supercomputing Resource Center