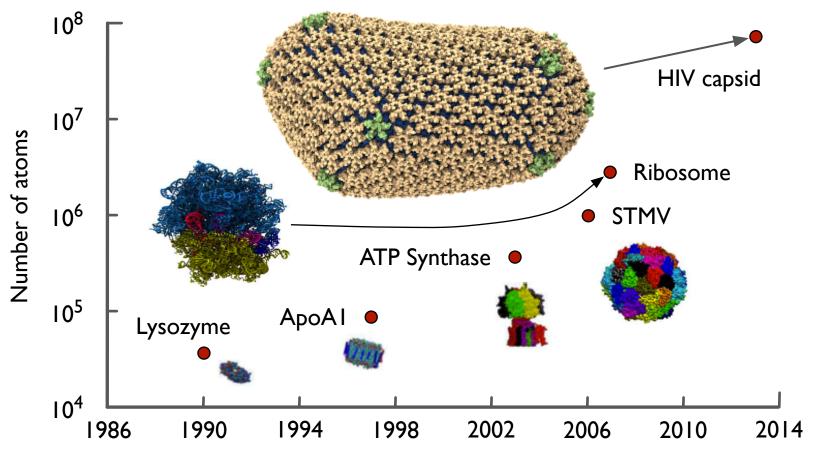
NAMD From the Developer's Perspective

James Phillips Beckman Institute, University of Illinois http://www.ks.uiuc.edu/Research/namd/

Our Partners: UIUC Parallel Programming Lab Develops Charm++ Parallel Programming System


Siebel Center for Computer Science

http://charm.cs.illinois.edu/

NAMD Enables Larger Simulations on Larger Machines

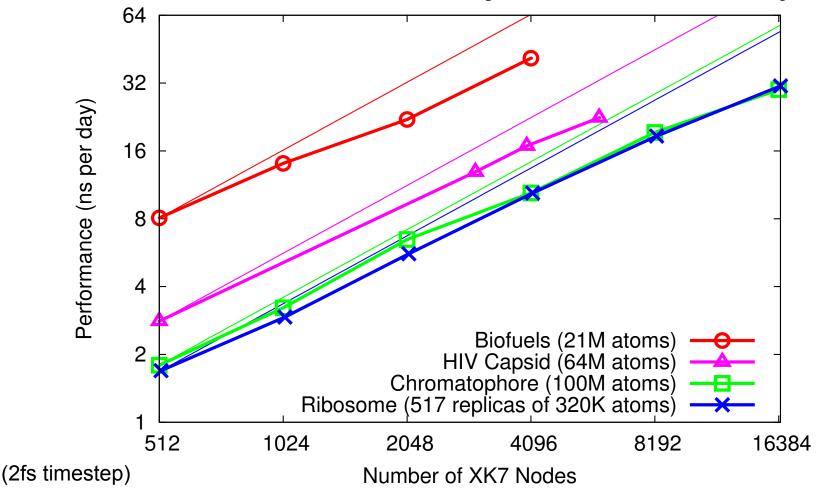
NAMD Serves NIH Users and Goals Practical Supercomputing for Biomedical Research

- 60,000 users can't all be computer experts.
 - 18% are NIH-funded; many in other countries.
 - 17,000 have downloaded more than one version.
 - 4000 citations of NAMD reference papers.
- One program available on all platforms.
 - Desktops and laptops setup and testing
 - Linux clusters affordable local workhorses
 - Supercomputers free allocations on XSEDE
 - Blue Waters sustained petaflop/s performance
 - GPUs next-generation supercomputing
- User knowledge is preserved across platforms.
 - No change in input or output files.
 - Run any simulation on any number of cores.
- Available free of charge to all.

NAMD 2.10 Ships Soon

- First beta release hopefully November 2013 (this week)
 - Development code in production on Blue Waters and Titan
 - Nightly builds available publicly on NAMD download site
- Focus on enabling petascale simulations
- Type 1: Large systems of ~100 million atoms
 - Scalable to all of Blue Waters or Titan
 - Most steering methods now working
 - Minimizer more stable for large systems
- Type 2: Replica exchange simulations of smaller systems
 - Charm++ replica support improves scaling on Cray
- Various other improvements
 - Xeon Phi port, GPU improvements, Multilevel summation

Blue Waters Posed Many Challenges


- Scale NAMD to 100M atoms
 - Read new .js file format
 - Distribute or compress static molecular structure data
 - Parallel atomic data input
 - Use shared memory in a node
 - Parallel load balancing
 - Parallel, asynchronous trajectory and restart file output
 - 2D decomposition of 3D FFT
 - Limit steering force messages
 - Fix minimizer stability issues
- Also build benchmarks...

- Scale NAMD to 300K cores
 - Charm++ shared memory tuning
 - IBM Power7 network layer
 - IBM BlueGene/Q network layer
 - Cray Gemini network layer
 - Cray torus topology information
 - Charm++ replica layers
 - Optimize for physical nodes
 - Adapt trees to avoid throttling
 - Optimize for torus topology
 - Optimize for parallel filesystem
- Also optimize for GPUs...

NAMD Enables Varied Projects on Titan Cray XK7

100 Million Atom Simulations Are Not Routine

- Simulation setup is a black art
 - Tools for adding solvent and ions don't scale
 - Need to move tools and users towards new "js" file format
- Still some rough edges
 - Not all NAMD features usable at scale
- Trajectory and restart output performance
 - New Charm++ I/O library will help address this
- Simulations require leadership machines
 - Available resources are limited, allocation process is slow
- Lack of setup/visualization/analysis facilities

Center Facilities Enable Petascale Biology

External Resources, 90% of our Computer Power Over the past five years the Center has assembled all necessary hardware and infrastructure to prepare and analyze petascale molecular dynamics simulations, and *makes these facilities available to visiting researchers*.

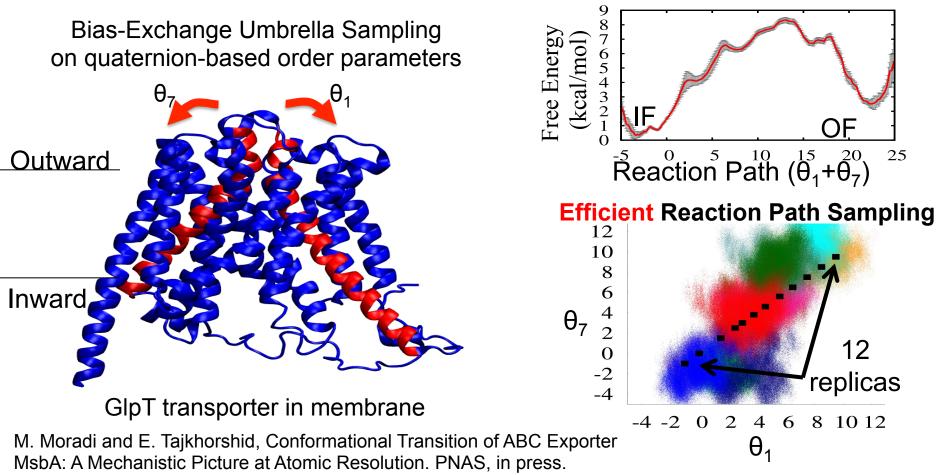
Simulation Output

10 Gigabit Network

Petascale Gateway Facility

High-End Workstations Accessible to Visitors

Virtual Facilities Enable Petascale Anywhere



High-end visualization and analysis workstations currently available only in person at the Beckman Institute must be *virtualized and embedded at supercomputer centers*.

Replica Exchange Enables Advanced Sampling

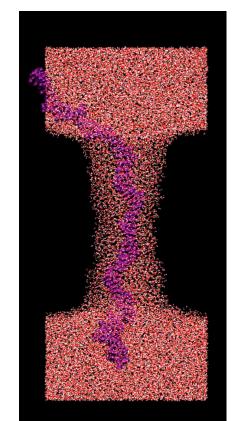
NAMD 2.10 Replica Exchange

- More general Charm++ integration:
 - NAMD 2.9 used MPI communicator splitting, required MPI version
 - NAMD 2.10 splits replicas in Charm++ low-level runtime (LRTS)
 - LRTS underlies MPI, Cray (uGNI), and BlueGene/Q (PAMI) implementations
 - New LRTS machine layers added for InfiniBand ("verbs") and ethernet ("netIrts")

Same Tcl scripts

Future work enabled by

Charm++ integration


as NAMD 2.9

- Basis for many enhanced sampling methods:
 - Parallel tempering (temperature exchange)
 - Umbrella sampling for free-energy calculations
 - Hamiltonian exchange (alchemical or conformational)
 - Finite Temperature String method
 - Nudged elastic band
- Better scaling for individual replicas:
 - Native Charm++ layers essential for multi-node GPU replicas
 - Topology-aware placement on Cray and BlueGene torus networks

Adaptability Through Scripting

- Tcl customizations are **portable**
- Top-level protocols:
 - Minimize, heat, equilibrate
 - Simulated annealing
 - Replica exchange (originally via sockets)
- Long-range forces on selected atoms
 - Torques and other steering forces
 - Adaptive bias free energy perturbation
 - Coupling to external coarse-grain model
- Special boundary forces
 - Applies potentially to every atom
 - Several optimizations for efficiency
 - Shrinking phantom pore for DNA

NAMD GPU: What is accelerated?

Accelerated

- Short-range non-bonded
 - Cutoff or with PME
 - w/ or w/o energy calculation
- Implicit solvent
- NVIDIA GPUs only

Not Accelerated

- Bonded terms
- PME reciprocal sum
- Integration
- Rigid bonds
- Grid forces
- Collective variables
- Etc.

NAMD GPU: What is disabled?

Disabled

- Alchemical (FEP and TI)
- Locally enhanced sampling
- Tabulated energies
- Drude (nonbonded Thole)
- Go forces
- Pairwise interaction
- Pressure profile

Not Disabled

- Memory optimized builds
- Conformational free energy
- Collective variables
- Grid forces
- Steering forces
- Almost everything else

NAMD GPU: What is different?

- Forces
 - Slightly less accurate than CPU
 - Different interpolation scheme, single precision
 - Also affects pressure calculation
- Energies
 - Don't match forces as closely as on CPU
 - Constant for interactions less than 1 Angstrom
 - Minimizer issues in NAMD 2.9 fixed in 2.10
 - Velocity-quenching minimizer should work in 2.9

NAMD GPU: Performance

What to expect

- 1 GPU = \sim 24 CPU cores
 - Depending on CPU and GPU
- Scaling to 10K atoms/GPU
 - Assuming fast network
- Must use smp/multicore
 - Many cores share each GPU
 - Use multicore for single node
 - At most one process per GPU

Why it may be worse

- Weak GPU (e.g., laptop)
- Too few CPU cores used
- Coarse-grained simulation
- Too few atoms per GPU
- Limited by network
- Limited by MPI (use ibverbs)
- Limited by special features

Thank You!

James Phillips Beckman Institute, University of Illinois http://www.ks.uiuc.edu/Research/namd/

