Part II - Applications of MultiSeq Evolution of Translation: Dynamics of Recognition in RNA:Protein Complexes

Part III – Towards in silico Cells: Simulating processes in entire cells

Zaida (Zan) Luthey-Schulten

Dept. Chemistry, Physics, Beckman Institute, Biophysics, Institute of Genomics

Biology

NIH Resource Macromolecular Modeling and Bioinformatics Workshop 2012

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Cellular Processes in Bacterial Cells

Whole Cell Simulations of an Inducible Genetic Switch:

- Assemble cells for *in silico* studies with molecular crowding from CET & proteomics data
- Lac Genetic switch in E. coli
- Stochastic gene expression models
- Kinetic parameters from in vitro & SM experiments
- Compare solns for 2 cell models: fast and slow growing E. coli
- Multi-particle reaction-diffusion solns on a 3D lattice using GPUs for an entire cell cycle
- Progress towards eukaryal cells
- Connecting to systems biology

Crowding from CET, Proteomics, & Scell Data

Roberts, Magis, Ortiz, Baumeister, ZLS Plos Comp. Biol (2011), Cybercell DB, Xie et al. Science 2011

In vivo Crowding in E. coli – Fast Growing

Immobile obstacle classes

20-30,000 ribosomes randomly placed

Abundances from proteomics studies

Fast growth phenotype (55 min) – uniformly distributed obstacles

Reaction diffusion master equation simulations on GPU

Lattice Microbes Software: A Brief Introduction

Software for simulating reactions within "in vivo" cells with molecular crowding

Ribosome

Roberts, Stone, Sepulveda, Hwu, Luthey-Schulten (2009) *IEEE IPDPS* Roberts, Magis, Ortiz, Baumeister, Luthey-Schulten (2011) *PLoS Comp. Bio.* Roberts, Stone, Luthey-Schulten (2012) *J. Comp. Chem.*

A Window into the Cell with VMD

John Stone

John Cole

Polymerases/ Large Complexes

Overview of Cell Simulation Tools

7/14

Lac genetic switch in E. coli

Kinetic model for lac regulatory circuit
Stochasticity & population heterogeneity? SM experiments (Xie, Science 2007, 2008):

Kinetic Model of lac System

Reaction	Param	Stochastic Rate	Units	Source ^a	-
Lac operon regulation					K – in vitro kinetic experiment
$R_2 + O ightarrow R_2 O$	k_{ron}	2.43e+06	$M^{-1}s^{-1}$	M	
$IR_2 + O \rightarrow IR_2O$	k_{iron}	1.21e+06	$M^{-1}s^{-1}$	M	
$I_2R_2 + O \rightarrow I_2R_2O$	k_{i2ron}	2.43e+04	$M^{-1}s^{-1}$	M	
$R_2 O \rightarrow R_2 + O$	k_{roff}	6.30e-04	s^{-1}	S	S – single molecule experiment
$IR_2O \rightarrow IR_2 + O$	k_{iroff}	6.30e-04	s ⁻¹	S	
$I_2 R_2 O \to I_2 R_2 + O$	k_{i2roff}	3.15e-01	s ⁻¹	M	
Transcription, translation, and degredation					M – model parameter fit to
$O \rightarrow O + mY$	k_{tr}	1.26e-01	s^{-1}	М	single-molecule distributions
$mY \rightarrow mY + Y$	k_{tn}	4.44e-02	s^{-1}	S	
mY ightarrow arnothing	k_{degm}	1.11e-02	s^{-1}	S	N 4
$Y \to \varnothing$	k_{degp}	2.10e-04	s^{-1}	М	
Lac inducer-represso	or interactions	TMG IPTG		TMG IPTG	
$I+R_2 ightarrow IR_2$	k_{ion}	2.27e+04 9.71e+04	$M^{-1}s^{-1}$	M K	
$I + IR_2 \rightarrow I_2R_2$	k_{i2on}	1.14e+04	$M^{-1}s^{-1}$	MK	
$I + R_2 O \rightarrow I R_2 O$	k_{iopon}	6.67e+02 2.24e+04	$M^{-1}s^{-1}$	M K	
$I + IR_2O \rightarrow I_2R_2O$	k_{i2opon}	3.33e+02 1.12e+04	$M^{-1}s^{-1}$	MK	Uninduced state
$IR_2 \rightarrow I + R_2$	k_{ioff}	2.00e-01	s ⁻¹	K	T
$I_2R_2 \rightarrow I + IR_2$	k_{i2off}	4.00e-01	s ⁻¹	K	
$IR_2O \rightarrow I + R_2O$	k_{iopoff}	1.00e+00	s ⁻¹	K	
$I_2 R_2 O \rightarrow I + I R_2 O$	$k_{i2opoff}$	2.00e+00	s ⁻¹	K	
Inducer transport					inducer
$I_{ex} ightarrow I$	k_{id}	2.33e-03	s^{-1}	K	
$I ightarrow I_{ex}$	k_{id}	2.33e-03	s^{-1}	K	
$Y + I_{ex} ightarrow YI$	k_{yion}	3.03e+04	$M^{-1}s^{-1}$	K	↑ N N NA
$YI \rightarrow Y + I_{ex}$	k_{yioff}	1.20e-01	s^{-1}	K	Ribosome
$YI \rightarrow Y + I$	k_{it}	1.20e+01	s ⁻¹	K	Induced state

Analysis of biochemical reactions $E + S \xrightarrow{k_1} ES$ (ES) $ES \xrightarrow{k_2} E + S$ $\frac{d[S]}{dt} = k_2[ES] - k_1[E][S]$ $ES \xrightarrow{k_3} E + P$ $\frac{d[E]}{dE} = k_2[ES] + k_3[ES] - k_1[E][S]$ dt 350 S Е 300 $\frac{d[ES]}{I} = k_1[E][S] - k_2[ES] - k_3[ES]$ ES 250 Ρ dt 200 $d[\underline{P}]$ $=k_3[ES]$ 150 dt 100 In cells hundreds of such reactions exist, some Involving only a few molecules (9 repressors, 50 1DNA, ...) others have thousands of reactants. 0 0 50 100 150 Time (s)

of molecules

Stochastic vs. Deterministic Solutions

Un-induced state – low inducer

Motivation: Capture Timescale and Fraction of Cells Undergoing Phenotypic Switching

Choi, Cai, Frieda, Xie (2008) Science

Switching in Fast Growing E. coli Cells – Bursting of mRNA

Switching Behavior – LacY/mRNA Distributions

Effect of in vivo crowding on repressor re-binding

In vivo – Slow Growing *E. coli*

Lifetimes Repressor-Operator Complexes

Localization of mRNA

Lattice Microbes Software Release

Single GPU version available since January 2012

http://www.scs.uiuc.edu/schulten/Im

Validation of GPU-based approximate algorithm (MPD-RDME) compared to the exact next-subvolume method

Lattice Microbes: as much as 360 times faster

_	Lac Switch, [I] = 5µM		Lac Switch, $[I] = 40 \mu M$	
Method	rxns/sec wall clock/sim hr		rxns/sec wall clock/sim hr	
CME				
Direct GPU	7.3x10 ⁶	0.018 sec	7.4x10 ⁶	4.0 sec
Direct No-GPU	5.0x10 ⁶	0.026 sec	5.0x10 ⁶	5.9 sec
Next React GPU	5.5x10 ⁶	0.024 sec	6.2x10 ⁶	4.8 sec
Next React No-GPU	3.9x10 ⁶	0.032 sec	4.5x10 ⁶	6.5 sec
Stochkit SSA	4.2x10 ⁶	0.031 sec	4.2x10 ⁶	7.2 sec
COPASI	2.7x10 ⁶	0.048 sec	2.8x10 ⁶	11 sec
RDME				
MPD-RDME GPU	0.44	1.89 days	0.1200	0.191 yrs
Next Subvol GPU	0.10	8.33 days	0.0004	59 yrs
Next Subvol No-GPU	0.10	8.67 days	0.0004	59 yrs
MesoRD	0.01	83 days	0.0003	68 yrs

Roberts, Stone, Luthey-Schulten (2012) JCC

Ongoing Development of Lattice Microbes

Expanding Lattice Microbes software to eukaryotic-sized cells

Progress: Added support for using multiple GPUs in a single node with good scaling
Looking Forward: Distribute simulations across multiple nodes in a cluster

