Introduction to evolutionary concepts and VMD/MultiSeq - Part I

Characterizing your systems

Zaida (Zan) Luthey-Schulten Dept. Chemistry, Physics, Beckman Institute, Institute of Genomics Biology, & Center for Biophysics

Workshop 2012 University of Illinois NIH Center Macromolecular Modeling and Bioinformatics

VMD/MultiSeq - "A Tool to Think"

Carl Woese - "VMD is far from a simple visualization tool for a biologist, it is a true thinking tool. Without it a whole class of biological hypotheses would simply not exist."

Why Look at More Than One Sequence?

1. Multiple Sequence Alignment shows patterns of conservation

- 2. Are these positions functionally important? Active sites, folding,...
- 3. What and how many sequences should be included?
- 4. Where do I find the sequences and structures for MS alignment?
- 5. How to generate pairwise and multiple sequence alignments?

New Tools in VMD/MultiSeq

Protein / RNA Sequence Data

SwissProt DB (400K), Greengenes RNA (100K) Signatures, Zoom

Metadata Information, Clustal, MAFFT & Phylogenetic Trees

RAXml Trees, Genomic Content, Temperature DB

Blast & PsiBlast

Sequence Editor

Sequence /Structure Alignment

Protein & RNA secondary structure

QR non-redundant seq / str sets

Cluster analysis / Bioinformatics scripting Tutorials MultiSeq/ AARS EF-Tu/Ribosome

J. Eargle, D. Wright, Z. Luthey-Schulten, *Bioinformatics*, 22:504 (2006) E. Roberts, J. Eargle, D. Wright, Z. Luthey-Schulten, *BMC Bioinformatics*, 7:382 (2006)

Aquaporin Superfamily: Bacterial & Eucaryal

Heymann and Engel News Physiol. Sci. (1999) Archaeal AqpM M. Marburgensis, JBC 2003, PNAS 2005

AQPO HUMAN	LNTLHPAVSVGQATTVEIFLTLQFVLCIFATYDE-RRNGQLGSVALAVGFSLALGHLFGMYYTGAGM	183
AQP1 HUMAN	RNDLADGVNSGQGLGIEIIGTLQLVLCVLATTDR-RRRDLGGSAPLAIGLSVALGHLLAIDYTGCGI	191
AQP2 HUMAN	VNALSNSTTAGQAVTVELFLTLQLVLCIFASTDE-RRGENPGTPALSIGFSVALGHLLGIHYTGCSM	183
AQP3 HUMAN	GIFATYPSGHLDMINGFFDQFIGTASLIVCVLAIVDPYNNPVPRGLEAFTVGLVVLVIGTSMGFNSGYAV	214
AQP4 HUMAN	VTMVHGNLTAGHGLLVELIITFQLVFTIFASCDS-KRTDVTGSIALAIGFSVAIGHLFAINYTGASM	212
AQP5 HUMAN	VNALNNNTTQGQAMVVELILTFQLALCIFASTDS-RRTSPVGSPALSIGLSVTLGHLVGIYFTGCSM	184
AQP6 HUMAN	INVVRNSVSTGQAVAVELLLTLQLVLCVFASTDS-RQTSGSPATMIGISWALGHLIGILFTGCSM	195
AQP7 HUMAN	GIFATYLPDHMTLWRGFLNEAWLTGMLQLCLFAITDQENNPALPGTEALVIGILVVIIGVSLGMNTGYAI	225
AQP8 HUMAN	-AAFVTVQEQGQVAGALVAEIILTTLLALAVCMGAINEKTKGPLAPFSIGFAVTVDILAGGPVSGGCM	209
AQP9 HUMAN	HIFATYPAPYLSLANAFADQVVATMILLIIVFAIFDSRNLGAPRGLEPIAIGLLIIVIASSLGLNSGCAM	215
GLPF ECOLI	GTFSTYPNPHINFVQAFAVEMVITAILMGLILALTDDGNGVPRGPLAPLLIGLLIAVIGASMGPLTGFAM	202
ruler	180	

Protein: RNA Complexes in Translation Evolution, Dynamics, Analysis

Proteins/RNA Olyribosomes Ribosome

"Signatures ribosomal evolution" **PNAS** 2008, **BMC** 2009, **BJ** 2010 "Motion L1 Stalk:tRNA" **JMB 2010** "Whole cell simulations on GPUs" **IEEE** 2009,**Plos CB** 2011,**PRL**2011

"Dynamic Signaling Network" PNAS 2009 "Dynamical Recognition Novel
"Exit Strategy Charged tRNA" JMB 2010 Amino Acids" JMB 2008
"Mistranslation in Mycoplasma" PNAS 2011 "tRNA Dynamics" FEBS 2010

Basic principles of evolutionary analysis for proteins & RNAs

- Comparative analysis of sequences and structures
- Multiple sequence alignments (gaps and editing)
- •Sequence and structure phylogenetic trees*
- •Reference to 16S rRNA tree
- •Horizontal or lateral gene transfer events
- Genomic context
- •Evolutionary profiles representing diversity
- Conservation analysis of evolutionary profiles

*Various models of evolutionary change

Alignment of ~200 EF-Tu sequences in VMD/MultiSeq

"G" scattered around gaps

* "Mafft" Katoh, Misawa, Kuma, Miyata, NAR 2002, 2005

MAFFT* alignment

~ 5 minutes

~ 30 seconds More sequences!

STAMP - Multiple Structural Alignments

- 1. Initial Alignment Inputs
- Multiple Sequence alignment
- Ridged Body "Scan"
- Pairwise Alignments and Hierarchical Clustering
- 2. Refine Initial Alignment & Produce Multiple Structural Alignment

$$P_{ij} = \left\{ e^{-d_{ij}^2/2E_1} \right\} \left\{ e^{-s_{ij}^2/2E_2} \right\}$$

probability that residue ion structure A is equivalent to residue jon structure B.

 S_{ij} — conform ational similarity; function of rms bew teen i-1, i, i+1 and j-1, j, j+1.

•Dynamic Programming (Smith-Waterman) through P matrix gives optimal set of equivalent residues.

•This set is used to re-superpose the two chains. Then iterate until alignment score is unchanged.

•This procedure is performed for all pairs with no gap penalty

Multiple Structural Alignments

STAMP – cont' d

2. Refine Initial Alignment & Produce Multiple Structural Alignment

Alignment score: $S_p L_p - i_A L_p - i_B$

$$S_{c} = \frac{S_{p}}{L_{p}} \frac{L_{p} - L_{A}}{L_{A}} \frac{L_{p} - L_{B}}{L_{B}}$$
$$S_{p} = \sum_{\text{aln.path}} P_{ij}$$

 \mathbf{L}_{p} , \mathbf{L}_{A} , \mathbf{L}_{B} — length of alignment, sequence A, sequence B \mathbf{j}_{A} , \mathbf{j}_{B} — length of gaps in A and B.

Multiple Alignment:

- •Create a dendrogram using the alignment score.
- •Successively align groups of proteins (from branch tips to root).
- •When 2 or more sequences are in a group, then average coordinates are used.

Structural Overlaps - STAMP

Ribosome large subunit showing ribosomal proteins L2 and L3 180,000 atoms in 4 rRNAs and 58 proteins

Universal Phylogenetic Tree 3 domains of life

Reference 16S rRNA tree

Leucyl-tRNA synthetase displays the full canonical phylogenetic distribution.

Look for horizontal gene transfer events

After W. Doolittle, modified by G. Olsen

Phylogenetic Distributions

Full Canonical

Basal Canonical

Non-canonical

increasing inter-domain of life Horizontal Gene Transfer

"HGT erodes the historical trace, but does not completely erase it...." G. Olsen

Woese, Olsen, Ibba, Soll MMBR 2000

Protein Structure Similarity Measure

Q_H Structural Homology

fraction of native contacts for aligned residues + presence and perturbation of gaps

 $Q_H = \aleph \left[q_{aln} + q_{gap} \right]$

$$q_{aln} = \sum_{i < j-2} \exp \left[-rac{(r_{ij} - r_{i'j'})^2}{2\sigma_{ij}^2} \right]$$

O'Donoghue & Luthey-Schulten MMBR 2003.

Structural Similarity Measure: The effect of insertions

"Gaps should count as a character but not dominate" C. Woese

$$\begin{split} q_{gap} &= \sum_{g_a} \sum_{j}^{N_{aln}} \max\left\{ \exp\left[-\frac{\left(r_{g_aj} - r_{g'_a j'} \right)^2}{2\sigma_{g_a j}^2} \right], \exp\left[-\frac{\left(r_{g_aj} - r_{g''_a j'} \right)^2}{2\sigma_{g_a j}^2} \right] \right\} \\ &+ \sum_{g_b} \sum_{j}^{N_{aln}} \max\left\{ \exp\left[-\frac{\left(r_{g_bj} - r_{g'_b j'} \right)^2}{2\sigma_{g_b j}^2} \right], \exp\left[-\frac{\left(r_{g_bj} - r_{g''_b j'} \right)^2}{2\sigma_{g_b j}^2} \right] \right\} \end{split}$$

Structure encodes evolutionary information!

Structure reveals distant evolutionary events Class I AARSS

structure-based phylogenetics

sequence-structure overlap

Sequences define more recent evolutionary

Conformational changes in the same protein.

ThrRS T-AMP analog, 1.55 A. T, 2.00 A.

 $Q_{\rm H} = 0.80$ Sequence identity = 1.00

Structures for two different species.

ProRS

M. jannaschii, 2.55 A. *M. thermoautotrophicus*, 3.20 A.

 $Q_{\rm H} = 0.89$ Sequence identity = 0.69

Relationship Between Sequence & Structure

Non-redundant Representative Profiles

QR computes a set of maximal linearly independent structures.

P. O'Donoghue and Z. Luthey-Schulten (2003) MMBR 67:550-571.

P. O'Donoghue and Z. Luthey-Schulten (2005) J. Mol. Biol., 346, 875-894.

Numerical Encoding of Proteins in a Multiple Alignment

Encoding Structure

Rotated Cartesian + Gap = 4-space

Aligned position $(x_{C_{\alpha}}, y_{C_{\alpha}}, z_{C_{\alpha}}, 0)$

adjustable

parameter

Gapped position

Gap Scaling

(0,0,0,g)

 $\frac{\|X\|_{F_4} + \|Y\|_{F_4} + \|Z\|_{F_4}}{\|G\|_{F_4}}$

Orthogonal Encoding = 24-space

23 amino acids (20 + B, X, Z) + gap

Sequence Space

Alignment is a Matrix with Linearly Dependent Columns

A maximal linearly independent subset can be determined with respect to a threshold, e.g., similarity measure threshold.

Evolutionary Profiles for Homology Recognition AARS Subclass ILMV

The composition of the profile matters. Choosing the right 10 sequence makes all the difference.

A. Sethi, P. O'Donoghue, Z. Luthey-Schulten (2005) JMB, PNAS

Design - Evolution of Structure and Function in Class II

Summary Structural Profiles

1.Structures often more conserved than sequences!! Similar structures at the Family and Superfamily levels. Add more structural information to identify core and variable regions 2. Which structures and sequences to include? Use evolution and eliminate redundancy with QR factorization

What is MultiSeq?

- MultiSeq is an extension to VMD that provides an environment to combine sequence and structure data
- A platform for performing bioinformatics analyses within the framework of evolution
- Provides software for improving the signal-to-noise ratio in an evolutionary analysis by eliminating redundancy (StructQR, SeqQR, Evolutionary Profiles "EP")
- Visualizes computationally derived metrics (Q_{res}, Q_H,..) or imported experimental properties

 Integrates popular bioinformatics tools along with new algorithms (ClustalW, MAFFT, BLAST, STAMP, Signatures, Mutual information, QR, PT,....)

○ ○ ○ Sequence Alignment Options Alignment Program Custa/W MAFFT Choose MAFFT to perform -> multiple sequence Multiple Alignment alignment Align All Sequences Align Marked Sequences Align Selected Regions Profile/Sequence Alignment. Align marked sequences to group: MAFFT alignment Profile/Profile Alignment Select two groups to align: MAFFT alignment Cancel OK

1

New Tools in VMD/MultiSeq

Protein / RNA Sequence Data

SwissProt DB (400K), Greengenes RNA (100K) Signatures, Zoom

Metadata Information, Clustal & Phylogenetic Trees

RAXml Trees, Genomic Content, Temperature DB

Blast & PsiBlast

Sequence Editor

Sequence /Structure Alignment

Protein & RNA secondary structure

QR non-redundant seq / str sets

Cluster analysis / Bioinformatics scripting Tutorials MultiSeq/ AARS EF-Tu/Ribosome

J. Eargle, D. Wright, Z. Luthey-Schulten, *Bioinformatics*, 22:504 (2006) E. Roberts, J. Eargle, D. Wright, Z. Luthey-Schulten, *BMC Bioinformatics*, 7:382 (2006)

MultiSeq Combines Sequence and Structure

- Align sequences or structures; manually edit alignments
- View data colored by numerous metrics including structural conservation and sequence similarity
- Synchronized coloring between 1D and 3D views

Load large sequence sets

Swiss-Prot (Proteins) Curated sequences 392,667 sequences Unaligned 177 MB on disk 2 minutes to load 2.4 GB memory used

Greengenes (RNA)*

- **Environmental 16S rRNA**
- 90,654 entries
- Aligned (7682 positions)
- 670 MB on disk
- 2.5 minutes to load *
- 4.0 GB memory used*

Sequence editor

- New sequence API allows editing of large alignments. Align closely related sequences by group, combine groups, and then manually correct.
- Zoom window gives an overview of the alignment, quickly move the editing window to any part of the alignment.

660 sequences of ribosomal protein S4 from all complete bacterial genomes^{*}.

* K. Chen, E. Roberts, Z Luthey-Schulten (2009) BMC Bioinformatics

Secondary structure prediction

- Integration with PSIPRED^{*} to predict secondary structure of sequences.
- Compare to VMD STRIDE predictions from structures.

Modeling of *Helicobacter* pylori ribosomal protein S4 using two known bacterial structures from Thermus thermophilus and Escherichia coli.

Zinc-binding site replaced by salt bridge in *H. pylori*.

* D. Jones (1999) J Mol Biol

PSIPRED installation

- PSIPRED is not included with VMD, must be installed locally.
- Configured in the MultiSeq software preferences dialog (File->Preferences).

Metadata Software

Requires a sequence database filtered for problematic regions. Here using Swiss-Prot for relatively fast predictions.

BLAST inst	allation Directory	
/usr/local/bla	kst	Browse
BLASTMAT	data	
BLASTOB		
PSIPRED In	stallation Directory	
olumes/Hom	seRA/D2/Homes/erobert3/Application	NI/OSX-I386/bin/ Browse)
PSIPREDDA	TA AID2Homes/erobert3/Applicatio	ons/OSX-086/share/psipredidata
PSIPREDDE	Volumes/Homes/Databases/psipre	ed/psipred-sp
Path to ext	ternal editor	
-		Browse

Export Modeller compatible alignments

• MultiSeq can automatically export SIF alignment files compatible with Modeller.

```
>P1; Hpylori_S4
sequence:Hpylori_S4:::::0.00:0.00
MARYRGAVERLERRFGVSLALKGE-RRLSGKSALDKRAYGPGQHGQR-RAKTSDYGLQLK
EKQKAKMMYGISEKQFRSIFVEANRLDGNTGENLIRLIERRLDNVVYRMGFATTRSSARQ
LVTHGHVLVDGKRLDIPSYFVRSGQKIEIKEKTKSNSQVVRAMELTAQTGIVPWIDVEKD
KKYGIFTRYPEREEVVVPIEERLIVELYSK*
```

```
>P1; Thermus_S4
structureX:Thermus_S4:2:D:209:D:::-1.00:-1.00
-GRYIGPVCRLCRREGVKLYLKGE-RCYSPKCAMERRPYPPGQHGQKRARRPSDYAVRLR
EKQKLRRIYGISERQFRNLFEEASKKKGVTGSVFLGLLESRLDNVVYRLGFAVSRRQARQ
LVRHGHITVNGRRVDLPSYRVRPGDEIAVAEKSRNLELIRQNLEAMKGRKVGPWLSLDVE
GMKGKFLRLPDREDLALPVNEQLVIEFYSR*
```

```
>P1; Ecoli_S4
structureX:Ecoli_S4:1:D:205:D:::-1.00:-1.00
-ARYLGPKLKLSRREGTDLFLKSGVRAIDTKCKIE---QAPGQHGAR-KPRLSDYGVQLR
EKQKVRRIYGVLERQFRNYYKEAARLKGNTGENLLALLEGRLDNVVYRMGFGATRAEARQ
LVSHKAIMVNGRVVNIASYQVSPNDVVSIREKAKKQSRVKAALELAEQREKPTWLEVDAG
KMEGTFKRKPERSDLSADINEHLIVELYSK*
```

```
a = mymodel(env, alnfile='alignment.ali', knowns=('Ecoli_S4','Thermus_S4'), sequence='Hpylori_S4')
a.starting_model = 1
a.ending_model = 20
a.make()
```

Phylogenetic tree editor

 Automatically add annotations and colors to phylogenetic trees based on taxonomy, enzyme, temperature class, and/or MultiSeq groupings.

Maximum likelihood tree of 660 S4 sequences reconstructed using RAxML.

A cluster of five proteobacterial sequences branch near the cyanobacterial sequences. These are cases of horizontal gene transfer.

Elijah Roberts 2009

Edit the physical layout of the tree

- Nodes with low support can be removed.
- Nodes can be rotated for easier reading.

Manipulate branches to simplify the tree

- Manually collapse by node.
- Automatically collapse clades that are alike according to taxonomy, enzyme, temperature class, and/or MultiSeq grouping.
- Set the root of the tree manually, if known from external sources.

Combined phylogenetic tree and genome content analysis of ribosomal protein S4 for all complete bacterial genomes.

Roberts, Chen, ZLS, **BMC Evol. Bio**. 2009

Phylogenetic tree generation

- Generate distance based trees only over well-aligned columns (no indels).
- Export alignments in Phylip format (PHY) compatible with RAxML for maximum likelihood reconstructions.
- Import Newick trees from phylogenetic reconstruction programs (including RAxML).

000	Create Phylogenetic Tree	
Create tree for:	All Sequences Marked Sequences Selected Regions	
	Use only aligned columns	
Create the folior	sing trees.	
	Structural tree using QH	
	Structural tree using RMSD	
	Sequence tree using Percent Identity	
	Sequence tree using CLUSTALW	
	From File:	
	s4_raami.tre	Browse
	OK Cancel	

Scripting MultiSeq

- All MultiSeq functions can now be scripted.
- Scripting an analysis provides benefits:
 - It can be checked for correctness.
 - It can be quickly repeated by anyone.
 - It can be modified later with new functionality.
 - It can be run on a cluster in VMD text mode. (if it can be easily broken into independent chunks)
- Many functions are too user specific and/or too complex to be turned into a GUI.
- Some examples of MultiSeq scripts...

Genome content

- When using sequence from fully sequenced genomes, additional information is available in the genome content.
- Conservation of gene ordering, neighbors, or intergenic regions can provide additional evolutionary information not contained in the sequence.
- Gene names and ordering can be obtained from the genome PTT files, want to organize the information in an evolutionarily meaningful manner.

Location	Strand	Length	PID	Gene	Synonym	Code COG	Product
34376383438021	-	127	16131173	rplQ	b3294 -	COG0203J	50S ribosomal subunit protein L17
34380623439051	-	329	16131174	rpoA	b3295 -	COG0202K	RNA polymerase, alpha subunit
34390773439697	-	206	16131175	rpsD	b3296 -	COG0522J	30S ribosomal subunit protein S4
34397313440120	-	129	16131176	rpsK	b3297 -	COG0100J	30S ribosomal subunit protein S11
34401373440493	-	118	16131177	rpsM	b3298 -	COG0099J	30S ribosomal subunit protein S13
34406403440756	-	38	16131178	rpmJ	b3299 -	COG0257J	50S ribosomal subunit protein L36
34407883442119	-	443	16131179	secY	b3300 -	COG0201U	preprotein translocase membrane subunit
34421273442561	-	144	16131180	rplO	b3301 -	COG0200J	50S ribosomal subunit protein L15
34425653442744	-	59	16131181	rpmD	b3302 -	COG1841J	50S ribosomal subunit protein L30
34427483443251	-	167	16131182	rpsE	b3303 -	COG0098J	30S ribosomal subunit protein S5

Combined genomic context/phylogenetic tree

 Use a script to walk through a phylogenetic tree, find the genome content near the source gene, create a graphical representation of the combined data.

proc draw_genome_context_of_phylogeny {args} {

```
# Load the sequences.
set alignment [::SeqData::Fasta::loadSequences $alignmentFilename]
```

```
# Load the tree
set tree [::PhyloTree::Newick::loadTreeFile $treeFilename]
# Reorder the alignment by the tree.
set treeAlignment {}
set leafNodes [::PhyloTree::Data::getLeafNodes $tree]
foreach node $leafNodes {
    set foundNode 0
    set nodeName [::PhyloTree::Data::getNodeName $tree $node]
    foreach sequence $alignment {
        if {$nodeName == [::SeqData::getName $sequence]} {
            lappend treeAlignment $sequence
            set foundNode 1
            break
        }
    }
}
```

Draw the genomic context.

drawGenomicContextOfAlignment \$outputFilename \$treeAlignment \$contextDistance \$scaling \$genomeDirectory

Combined genomic context/phylogenetic tree

proc drawGenomicContextOfAlignment {outputFilename alignment contextDistance scaling genomeDirectory} {

```
fcreach sequence $alignment {
    # Make sure we have the GI number for this sequence.
    set giNumber [::SeqData::getSourceData $sequence "gi"]
    # Make sure we can tell which genome this sequence is from.
    set taxonomy [join [::SeqData::getLineage $sequence 1 0 1] ","]
    if {![info exists genomeTaxonomyMap($taxonomy)]} {
        error "ERROR} Unknown genome for sequence [::SeqData::getName $sequence]: $taxonomy"
    }
    # Go through each of the genome context files for the genome.
    set foundGene 0
    foreach genomeName $genomeTaxonomyMap($taxonomy) {
        ...
    }
}
```

```
# Draw the genomic context.
```

}

drawMultipleGenomicContext \$outputFilename \$alignment \$geneFiles \$genePositions \$geneStrands \$contextDistance

	-Betaproteobacteria, Thiobacillus denitrificans ATCC 25259	-+ http- Jett	4985Y	+2155	wpeM +	- rgsD		· · · · ·			
	100 Betaprofeobacteria, Azoarous sp. BH72	Ore Grade Jack	Yose	inth an	Neg- Meg-	-1980	-spaA	-90	-3465	+	+int#2
	ez Betaprotecbacteria, Azoarous sp. EbN1	Old+ Ind+ Ind+	+990'Y	- + 12	+rpsM +rpsK	HgaD	Acidi+	+q#Ü	+get(+
	100 Betaproteobacteria, Dechloromonas aromatica RCB	Older Page Jape	ease(%	Firth +-	HIJEM +-	+rpaD	(+	· +	-		
r.	100 Detaprotecbacteria, Nitrosospira multiformis ATCC 25/196	wpsit or or	+8807	bankti	-spini a:	repeb		+	147 (1.14)	- · · · · ·	
L	Betaproteobacteria, Nitrosomonas eutropha C91	14 14 Jan	~+500Y	partition	sepati ac	Carps		+		Bgreau	-
L	Betaproteobacteria, Nitrosomonas europaea ATCC 19718	+ bog Jage +	+tecY	e-in/A	+rpsM +rpsK	+cpeD	+tgoA	-	- 4	-smp8	+
4	100 Gammaproteobatteria, Psychrobacter arcticus 273-	Hpel Hpel Hpel	+0007	100	+quill +quill	+rgmD	+90Å	(index)			- +
L	120 Gammaproteobadteria, Psychrobacter cryohalolentis K	Oqt+ trop Sept+	+9857	100	+tpaM +-	++peD	- ¥	City-		-	
L	Gammaproteobacteria, Psychrobacter sp. PRwI-1	Opt top Tape	HEROY .		HIM H	Gager	10 AC	Cupe [+		
5	Gammaprotecbacteria, Acinetobacter sp. ADP1	Out- Crist Step Page	1990/37)(-)	Xaqs Mags	-tgwD	Aoge	-qiQ	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		Jail
	Gammaproteobacteria, Acinetobacter baumannii SDF	Olg+ hgt Jap+ Bp+	+680011		ArpsM +rpsK	- Cerps	App+	-19K)			Aut.
	Gammaproteobacteria, Acinetobacter baumannii AYE	oge trop terms	+980CY	- izi	+rpsK	+qmD	Acqu+	-piQ	+-		-Sect.
	Gammaproteobacteria, Acinetobacter baumanni ACIOU	Old+ Ind+ Bag+ High	HBRY		HIDEN HIDEN	+quiD	+rpoA	Hiptig	+		-facili

Genome content future directions

- Genome content still a work in progress.
- Good candidate for a GUI: combined phylogenetic tree/ genome content viewer.
- Can also use COG codes to color by gene function.
- Still need API for manipulating PTT files.

Roberts, Chen, ZLS, **BMC Evol. Bio**. 2009

Genome content of ribosomal protein S4 by occurrence of the gene in the alpha operon.

Fifteen Clostridia genomes contain two copies of S4: one zinc-binding and one zinc-free.

BLAST DB Searching

- Import sequence data directly from BLAST databases
- Search using a single sequence or an EP profile
- Filter results based on taxonomy or redundancy (QR)

Name	£ Score					- 4	110		_					420							4	90						Filter Options					
BYK_GLOW	14-10	-		. *	+	+	R. (1	1		1.7	. 11	ы.	Α.,		-0	D	ь.	0								. A.	Т.			-		 	-
060676	26/10																											E SCONE					
6/1000132	2e-18	- 1																										Redundancy Cutoff	100	10			1
29130208	36-19	- P			0																							Province and the	-			-	-
57159018	36-18				10							w.	ć.		A	Û.	Υ.	τ.,								÷		poperengation	Garta	**			
1NIW	40-10			1				1.0																					Bacte	64			
40100000	Se-10	-		1				1																					Eukar	yofa			
8YK, 8YN93	Se 18			1																													1.5
SYK, STML	10-18	-		10				1																									
SYK_STRAL	1e18	- 6					11.1		1.1	1.1	A	τ.			. 0	- a	ñ	κ.			A 1	2 к	τ.	К.		1.1	1.0	Mandan	1000			-	
0025461771	1618	1					4. 1																					Pargoon.	Free	_			
6/122/18/14	26-18	1					10. 1																						Metac				1
68179482	39-18		1.00	1.																							- 1		Viridip	iantae	1		
SYK, PROMA	49-18						11.1																						1				100
SST38540	59-10	10					16.3	100	1.1	03	ΞA.	τ	۰.		0	0	1	6.1	18		AL I	1.8	εT.	80	E I	t i	1		J				
SYR_STIME	56-18						11.0	1										α.								۰.		Proton	310	-		-	
55620199	Se-18							1		1.1	14	÷	۰.		-0	0	6	ĸ	14		A. 5	1. H	·	ю.	6.6	6 k.	1	roport	Actes	d acteri		 	
DYK_STRPN	de-18	1.4					6.4											û.								i.	14		Aputh	C BHE	-		
15900510	89-18	1.4																0								- i.			Arthro	poda			
0052600F	56-18	- 1		10					1.1	1	CA.	τ.	۰.		- 0	0	μ.	κı	. 6	w.	A. 1) н	Τ.	ю.:	E 1	E . K.			Racter	eycora cuidata	100		200
SYKI_SALTI	50-10	1.0		1																									Renam	with the	* .		20
SYK ENTER	8e-18					1																							Analy	read .			
MUTURANT .	Re-18	1.0																									1		eppo				

Protein sequence alignment How do I align two similar, but different sequences ?

Sequence 1: $a_1 a_2 a_3 - - a_4 a_5 \dots a_n$ Sequence 2: $c_1 - c_2 c_3 c_4 c_5 - \dots c_m$

There exist fast web tools, e.g., BLAST search: http://www.ncbi.nlm.nih.gov/ See also Blastn, Psi-Blast,

S NCBI		protein-prote	ain BLAST
Nucleotide	Protein	Translations	Retrieve results for an RID
Search			
Set subsequence	From: To:		
Choose database	nr 🛟		
Do CD-Search	\checkmark		
Now:	BLAST! or Reset query	Reset all	

Sequences from Swiss-Prot, NCBI, JGI, Structures from PDB, CATH, SCOP,

🊵 ExPASy Home page	Site Map	Search ExPASy	Contact us	Swiss-Prot
Search Swiss-Pr	ot/TrEMBL	🗧 for aqp	Go Clear	

NiceProt View of Swiss-Prot: P47865

Printer-friendly view Submit update Quick BlastP search

[Entry info] [Name and origin] [References] [Comments] [Cross-references] [Keywords] [Features] [Sequence] [Tools]

Entry information	
Entry name	AQP1_BOVIN
Primary accession number	P47865
Secondary accession numbers	None
Entered in Swiss-Prot in	Release 33, February 1996
Sequence was last modified in	Release 44, July 2004
Annotations were last modified in	Release 45, October 2004
Name and origin of the protein	
Protein name	Aquaporin-CHIP
Synonyms	Water channel protein for red blood cells and kidney proximal tubule Aquaporin 1 Water channel protein CHIP29
Gene name	Name: AQP1
From	Bos taurus (Bovine) [TaxID: 9913]
Taxonomy	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovidae; Bovinae; Bos.
References	
[1] SEQUENCE FROM NUCLEI TISSUE=Ocular ciliary epithel	C ACID. ium; Snapz Pro X

Note: most headings are clickable, even if they don't appear as links. They link to the user manual or other documents.

Final Blast Result: Sequence Alignment

>gi 46395801 sp 088F17 AOPZ_PSEPK G Aquaporin Z
Length = 230

Score = 119 bits (299), Expect = 6e-27 Identities = 70/186 (37%), Positives = 105/186 (56%), Gaps = 12/186 (6%) Query: 53 VSLAFGLSIATLAQSVGHISGAHLNPAVTLGLLLSCQISVLRAIMYIIAQCVGAIVATAI 112 V+ AFGL++ T+A ++GHISG HLNPAV+ GL++ + + Y+IAO +GAI+A + Sbjct: 40 VAFAFGLTVLTMAFAIGHISGCHLNPAVSFGLVVGGRFPAKELLPYVIAQVIGAILAAGV 99 Query: 113 LSGITSSLP--DNSLGL--NALAP----GVNSGQGLGIEIIGTLQLVLCVLATTDRRRRD 164 ++ ++ TD R + I S + S GL N A G GG E++ T Sbjct: 100 IYLIASGKAGFELSAGLASNGYADHSPGGYTLGAGFVSEVVMTAMFLVVIMGATDARAP- 158 Ouery: 165 LGGSGPLAIGFSVALGHLLAIDYTGCGINPARSFGSSVITHNF--ODHWIFWVGPFIGAA 222 G P+AIG ++ L HL++I T +NPARS G ++ + O W+FWV P IGAA Sbjct: 159 -AGFAPIAIGLALTLIHLISIPVTNTSVNPARSTGPALFVGGWALQOLWLFWVAPLIGAA 217 Query: 223 LAVLIY 228 + +Y Sbjct: 218 IGGALY 223

Search returns approximate alignments - needing refinement! Clustal, Muscle, MAFT, Tcoffee, pileup, Smith-Waterman, and manual editing in sequence editor

Flexible Grouping of Data

- Automatically group data by taxonomic classification to assist in evolutionary analysis (HGT) or create custom groups
- Apply metrics to groups independently, e.g bacterial signal

Sequence Name		2								90	1					_	-3
Eukaryota:Fungi																	
🗖 1asy_A 🛛 💌 🔳	83	S	R	D	s	D	R	T	G	Q	к	R	V	K	F	N /	D
a 1eov_A	83	S	R	D	8	D	R	T	G	0	к	R	V	ĸ	F	v	D
SYDC_YEAST	82	S	R	D	s	D	R	T	G	Q	ĸ	B	V	ĸ	F	۷	D
Eukaryota:Metazoa		2															
SYD_CAEEL	57	s	к	•		E	ĸ	к	٧	L	N	F	L	к	V	ĸ	E
SYD_HUMAN	33	S	Q			E	×	P	D	R	٧	L	۷	R	V	R	D
SYD_MOUSE	33	S	Q			E	ĸ	P	D	R	۷	L	v	A	V	к	D
Archaea:Crenarcha		-															
SYD_AERPE	1	12	- 10		1.	32	22	1	м	Ľ	к	D	R	F	1	A	D
Archaea:Euryarchaeota																	
🗖 1n9w_A 🛛 💌 🔳	3		40	1	1	14	24	84	87	R	м	R	۷	L	۷	R	D
🗖 1b8a_A 🛛 関 🔳 🖬	1		65			34	1	54	M	Y	R	T	н	Y	S	s	E
SYD_METMA	1		÷		M	S	1	A	N	L	R	T	н	Y	т	A	D
SYD_HALN1			÷			÷	33	17	м	E	N	R	т	Y	т	A	D
SYD_THEAC	1	-	80	•			÷	œ.		÷	+1	М	L	s	1	A	E
SYD_PYRHO	1	2.0	+	10		+		-14	м	1	E	к	۷	Y	С	Q	Е
Bacteria:Proteobacteria											-						
🗖 110w_A 🛛 🔽 🖬	1	-		٠.				м	R	•	R	T	н	¥	A	G	s
🗖 1il2_A 🛛 🔽	1		4				4	4	M	1	R	T	E	Y	C	G	Q

MultiSeq: Display and Edit Metadata

- External databases are crossreferenced to display metadata such as taxonomic information and enzymatic function
- Changes to metadata are preserved for future sessions
- Electronic Notebook: Notes and annotations about a specific sequence or structure can be added

romyces cerevisiae	
2	8
te-tRNA ligase.	1
- RNA synthetase, cytoplasmic 1.12) (AspartatetRNA ligase)) - Saccharomyces cerevisiae s yeast).	
1802,SYDC_YEAST OVA	•
ita icota	
romycotina romycetes	-
romycetales	
	ĺ
	()

Acknowledgements

- Elijah Roberts
- John Eargle
- Ke Chen
- Tyler Harpole
- Kirby Vandivort
- John Stone

NIH Center for Macromolecular Modeling and Bioinformatics

VMD/MultiSeq Tutorials

- 1. Evolution of Translation: AARS:tRNA
- 2. Evolution of Translation: EF-Tu:tRNA
- 3. Evolution of Translation: Ribosome
- 4. Dynamical Network Analysis new