Statistical Mechanics of Proteins

Ubiquitin

Show molecular dynamics trajectory in VMD

Ubiquitin

Root Mean Squared Deviation: measure for equilibration and protein flexibility

$$RMSD_{\alpha} = \sqrt{\frac{\sum_{j=1}^{N_t} \sum_{\alpha=1}^{N_{\alpha}} (\vec{r}_{\alpha}(t_j) - \langle \vec{r}_{\alpha} \rangle)^2}{N_{\alpha}}}$$

Protein sequence exhibits characteristic permanent flexibility!

NMR structures aligned together to see flexibility

MD simulation

The color represents mobility of the protein per residue through simulation (red = more flexible)

Thermal Motion of Ubiquitin from MD

RMSD values per residue

Thermal Motion of Ubiquitin from MD

Temperature Dependence of Crystal Diffraction (Debye-Waller factor)

Bragg's law

$$2 d \sin \theta = \lambda$$

structure factor

$$f_j \exp[-i\vec{s}\cdot\vec{r}_j]$$

But the atom carries out thermal vibrations around equilibrium position \vec{x}_j

$$\vec{r}_j(t) = \vec{x}_j + \vec{u}_j(t)$$

Accordingly:

$$\langle f_j \exp[-i\vec{s}\cdot\vec{r}_j]\rangle = f_j \exp[-i\vec{s}\cdot\vec{x}_j] \langle \exp[-i\vec{s}\cdot\vec{u}_j]\rangle$$

Thermal Motion of Ubiquitin from MD

Temperature Dependence of Crystal Diffraction (Debye-Waller factor)

One can expand:

$$\langle \exp[-i\vec{s}\cdot\vec{u}_j]\rangle = 1 - i\underbrace{\langle \vec{s}\cdot\vec{u}_j\rangle}_{=0} - \frac{1}{2}\langle (\vec{s}\cdot\vec{u}_j)^2\rangle + \dots$$

Spatial average for harmonic oscillator: $\langle (\vec{s} \cdot \vec{u}_j)^2 \rangle = \frac{1}{3} s^2 \langle u_j^2 \rangle$

One can carry out the expansion further and show

$$\langle \exp[-i\vec{s}\cdot\vec{u}_j]\rangle = \exp\left[-\frac{1}{6}s^2\langle\langle u_j^2\rangle\right]$$

Using for the thermal amplitude of the harmonic oscillator

$$\frac{1}{2}m\omega^2 u_j^2 = \frac{3}{2}k_B T$$

one obtains

Debye-Waller factor

$$\langle f_j \exp[-i\vec{s}\cdot\vec{r}_j]\rangle = f_j \exp[-s^2k_BT/2m\omega^2] \exp[-i\vec{s}\cdot\vec{x}_j]$$

Energies: kinetic and potential

temperature dependence

$$\langle \sum_{j} \frac{1}{2} m_{j} v_{j}^{2} \rangle$$
Kinetic energy (quadratic)
$$U(\vec{R}) = \sum_{\underline{bonds}} k_{i}^{bond} (r_{i} - r_{0})^{2} + \sum_{\underline{angles}} k_{i}^{angle} (\theta_{i} - \theta_{0})^{2} + \sum_{\underline{U_{bond}}} k_{i}^{dihe} [1 + \cos(n_{i}\phi_{i} + \delta_{i})] + \sum_{\underline{U_{dihedral}}} \sum_{j \neq i} 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \sum_{i} \sum_{j \neq i} \frac{q_{i}q_{j}}{\epsilon r_{ij}}$$

$$U_{nonbond}$$

Potentialc energy (not all quadratic)

Energies: kinetic and potential

temperature dependence

$$\langle \sum_{j} \frac{1}{2} m_{j} v_{j}^{2} \rangle = \frac{3}{2} N k_{B} T$$
Kinetic energy (quadratic)
$$U(\vec{R}) = \sum_{bonds} k_{i}^{bond} (r_{i} - r_{0})^{2} + \sum_{angles} k_{i}^{angle} (\theta_{i} - \theta_{0})^{2} + \sum_{U_{bond}} k_{i}^{dihe} [1 + \cos(n_{i}\phi_{i} + \delta_{i})] + \sum_{i} \sum_{j \neq i} \frac{q_{i}q_{j}}{\epsilon r_{ij}}$$

$$\sum_{i} \sum_{j \neq i} 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \sum_{i} \sum_{j \neq i} \frac{q_{i}q_{j}}{\epsilon r_{ij}}$$

$$U_{nonbond}$$

Potentialc energy (not all quadratic)

Energies: kinetic and potential

Maxwell Distribution of Atomic Velocities

Analysis of E_{kin} , T (free dynamics)

Temperature [K]

Definition of Temperature

$$\langle \sum_{j} \frac{1}{2} m_j v_j^2 \rangle = \frac{3}{2} N k_B T$$

$$T = \frac{2}{3N k_B} \left\langle \sum_{j} \frac{1}{2} m_j v_j^2 \right\rangle$$

The atomic velocities of a protein establish a thermometer, but is it accurate?

Temperatur Fluctuations

Maxwell distribution

The atomic velocity thermometer is inaccurate due to the finite size of a protein!

$$dP(v_n) = c \exp(-m v_n^2 / 2k_B T) dv_n \tag{7}$$

Individual kinetic energy $\epsilon_n = mv_n^2/2$

$$dP(\epsilon_n) = (\pi T_0 \epsilon_n)^{-1/2} \exp(-\epsilon_n/k_B T_0) d\epsilon_n \tag{8}$$

One can derive (temperature T_0 in units k_B)

$$\langle \epsilon_n \rangle = T_0/2$$
 (9)

$$\langle \epsilon_n^2 \rangle = 3 T_0^2 / 4 \tag{10}$$

$$\langle \epsilon_n^2 \rangle - \langle \epsilon_n \rangle^2 = T_0^2 / 2$$
 (11)

The distribution of the total kinetic energy $E_{kin} = \sum_{j} \frac{1}{2} m_j v_j^2$, according to the central limit theorem, is approximately Gaussian

$$P(E_{kin}) = c \exp\left(\frac{-(E_{kin} - \langle E_{kin} \rangle)^2}{2\left(\frac{3Nk_B^2 T_0^2}{2}\right)}\right)$$
(12)

The distribution function for the temperature $(T = 2E_{kin}/3k_B)$ fluctuations $\Delta T = T - T_0$ is then

$$P(\Delta T) = c \exp[-(\Delta T)^2/2\sigma^2], \qquad \sigma^2 = 2T^2/3N$$
 (13)

For $T_0 = 100$ K and N = 557, this gives $\sigma = 3.6$.

Specific Heat of a Protein

Total energy of ubiquitin (NVE ensemble)

Simulated Cooling of Ubiquitin

- Proteins function in a narrow (physiological)
 temperature range. What happens to them when the
 temperature of their surrounding changes significantly
 (temperature gradient)?
- Can the heating/cooling process of a protein be simulated by molecular dynamics? If yes, then how?

What can we learn from the simulated cooling/heating of a protein?

How to simulate cooling?

Heat transfer through mechanical coupling between atoms in the two regions

coolant layer of atoms

motion of atoms is subject to stochastic Langevin dynamics

$$m\ddot{\mathbf{r}} = \mathbf{F}_{FF} + \mathbf{F}_{H} + \mathbf{F}_{f} + \mathbf{F}_{L}$$

 $F_{\scriptscriptstyle FF}$ ightarrow force field

 $F_{\scriptscriptstyle H}$ \to harmonic restrain

 $F_f \rightarrow friction$

 $F_L \rightarrow$ Langevin force

atoms in the inner region follow Newtonian dynamics

$$m\ddot{r} = F_{FF}$$

Simulated Cooling - Result

t	$\langle T_{sim} \rangle$						
0.05	298.75	1.05	276.00	1.95	267.00	3.25	261.00
0.15	289.25	1.15	276.50	2.05	268.50	3.45	258.50
0.35	285.50	1.25	275.25	2.25	266.50	3.55	259.50
0.55	282.25	1.35	271.00	2.35	264.50	3.95	256.50
0.65	282.75	1.45	271.75	2.55	263.50	4.05	257.25
0.75	279.00	1.65	269.50	2.65	264.50	4.45	254.00
0.85	277.75	1.75	271.00	2.85	262.00	4.55	255.25
1.00	277.50	1.85	268.00	3.05	262.50	4.85	252.00

Result from simulation

Table 1: Mean temperature $\langle T_{sim} \rangle$ [K] of the protein as a function of time t [ps].

Heat Conduction Equation

$$\frac{\partial T(\mathbf{r},t)}{\partial t} = D\nabla^2 T(\mathbf{r},t)$$

mass density

thermal diffusion coefficient

$$D = K/\rho c$$

specific heat

thermal conductivity

- approximate the protein with a homogeneous sphere of radius R~20 Å
- calculate T(r,t) assuming initial and boundary conditions:

$$T(r,0) = T_0 \text{ for } r < R$$
$$T(R,t) = T_{bath}$$

$$\frac{\partial T(\mathbf{r},t)}{\partial t} = D \nabla^2 T(\mathbf{r},t) ,$$

$$D = K/\rho c ,$$

Initial condition

$$T(\mathbf{r},0) = \langle T_{sim} \rangle(0)$$
 for $r < R$,

Boundary condition

$$T(R,t) = T_{bath}$$
.

Spherical symmetry

$$\frac{\partial T(r,t)}{\partial t} = D \frac{1}{r} \partial_r^2 r T(r,t)$$

 T_{bath}

We assume

$$T(r,t) = T_{bath} + \sum_{n=1}^{\infty} a_n e^{\lambda_n t} u_n(r)$$

difference from bath

Here u_n are the eigenfunctions of the spherical diffusion operator

$$L \equiv \frac{D}{r} \frac{d^2}{dr^2} r$$

$$\frac{D}{r}\frac{d^2}{dr^2}ru_n(r) = \lambda_n u_n(r) , u_n(0) = \text{finite}, u_n(R) = 0$$

Temperature averaged over volume

$$\langle T \rangle (t) = \left(\frac{4\pi R^3}{3}\right)^{-1} \int d^3 \mathbf{r} \, T(\mathbf{r}, t) = \frac{3}{R^3} \int_0^R r^2 dr \, T(r, t)$$

$$= T_{bath} + \sum_{n=1}^{\infty} a_n \exp\left[-\left(\frac{n\pi}{R}\right)^2 D t\right] \frac{3}{R^3} \int_0^R r dr \sin\left(\frac{n\pi r}{R}\right)$$

$$= T_{bath} + 6\frac{\Delta T}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left[-\left(\frac{n\pi}{R}\right)^2 D t\right]$$

 $D \approx 0.38 \times 10^{-3} \text{cm}^2 \text{s}^{-1}$

water $1.4 \times 10^{-3} \text{cm}^2 \text{s}^{-1}$