NAMD Tutorial (Part 2)

- 2 Analysis
 - ▶ 2.1 Equilibrium
 - > 2.1.1 RMSD for individual residues
 - ▶ 2.1.2 Maxwell-Boltzmann Distribution
 - ▶ 2.1.3 Energies
 - ▶ 2.1.4 Temperature distribution
 - ▶ 2.1.5 Specific Heat
 - > 2.2 Non-equilibrium properties of protein
 - > 2.2.1 Heat Diffusion
 - 2.2.2 Temperature echoes

Temperature Echoes in Proteins

- Coherent motion in proteins: Echoes
- Generation of echoes in ubiquitin via velocity reassignments
 - 1) Temperature quench echoes
 - 2) Constant velocity reassignment echoes
 - 3) Velocity reassignment echoes

temperature ⇔ velocities

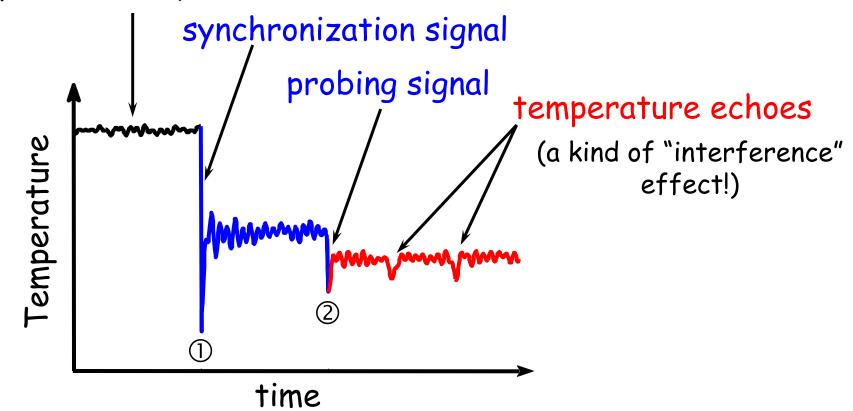
kinetic temperature:

$$T(t) = \frac{2}{(3N-6)k_R} \sum_{n=1}^{3N-6} \frac{m_n v_n^2(t)}{2}$$

Temperature Echoes

- are sharp, resonance-like features in the time evolution of the protein's temperature
- can be produced through 2 consecutive velocity reassignments

protein in equilibrium

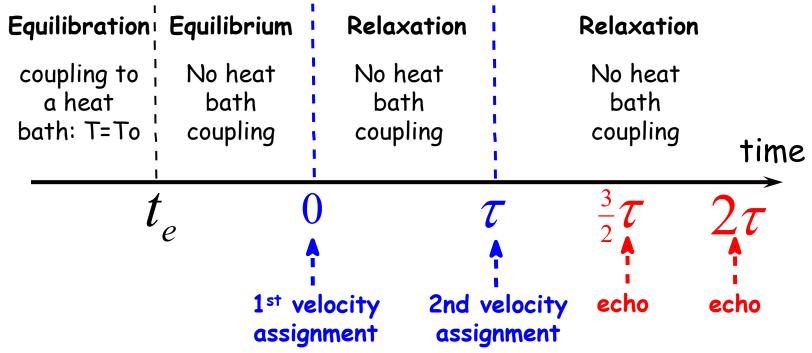


Velocity Reassignments

- ▶protein ≈ collection of weakly interacting harmonic oscillators having different frequencies
- Lat $t_1=0$ the 1st velocity reassignment: $v_i(0)=\lambda_1 u_i$ synchronizes the oscillators (i.e., make them oscillate in phase)
- Lat $t_2 = \tau$ (delay time) the 2nd velocity reassignment: $v_i(\tau) = \lambda_2 u_i$ probes the degree of coherence of the system at that moment
- degree of coherence is characterized by:
- the time(s) of the echo(es)
- the depth of the echo(es)

$$\lambda_1 = \lambda_2 = 0 \implies$$
 temperature quench $\lambda_1 = \lambda_2 = 1 \implies$ constant velocity reassignment $\lambda_1 \neq \lambda_2 \neq 1 \implies$ velocity reassignment

Producing Temperature Echoes by Velocity Reassignments in Proteins



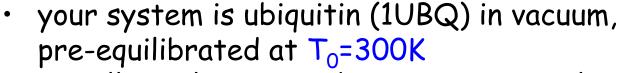
Temperature quench echoes:

$$v_i(0) = v_i(\tau) = 0$$

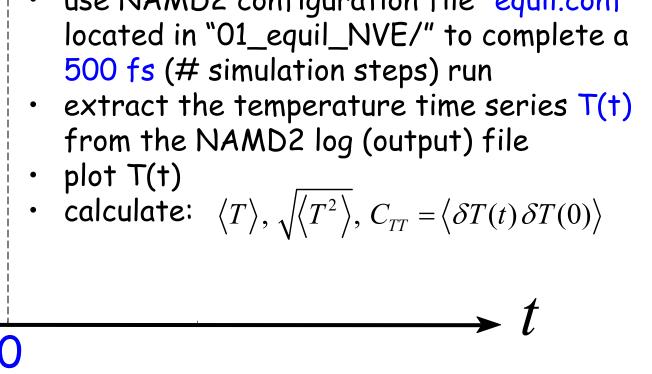
Const velocity reassignment echoes: $v_i(0) = v_i(\tau) = u_i$

Velocity reassignment echoes: $v_i(0) = u_i$, $v_i(\tau) = \lambda u_i$

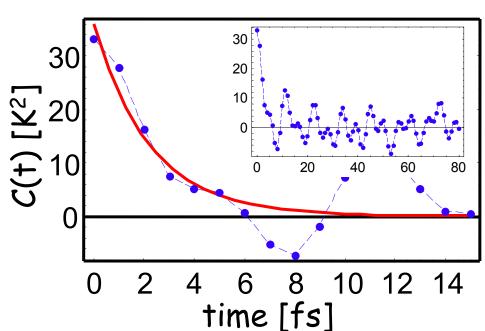
Generating T-Quench Echo: Step1



- run all simulations in the microcanonical (NVE) ensemble
- psf, pdb and starting binary coordinate and velocity files are available in "common/"
 - use NAMD2 configuration file "equil.conf" located in "01_equil_NVE/" to complete a 500 fs (# simulation steps) run



Temperature Autocorrelation Function



$$C(t) = \langle \Delta T(t) \Delta T(0) \rangle$$

$$\to C(t_i) \approx \frac{1}{N-i} \sum_{n=1}^{N-i} \Delta T(t_{n+i}) \Delta T(t_n)$$

$$C(t) = C(0) \exp\left(-t/\tau_0\right)$$

Temperature relaxation time:

$$\tau_0 \approx 2.2 \, fs$$

Mean temperature:

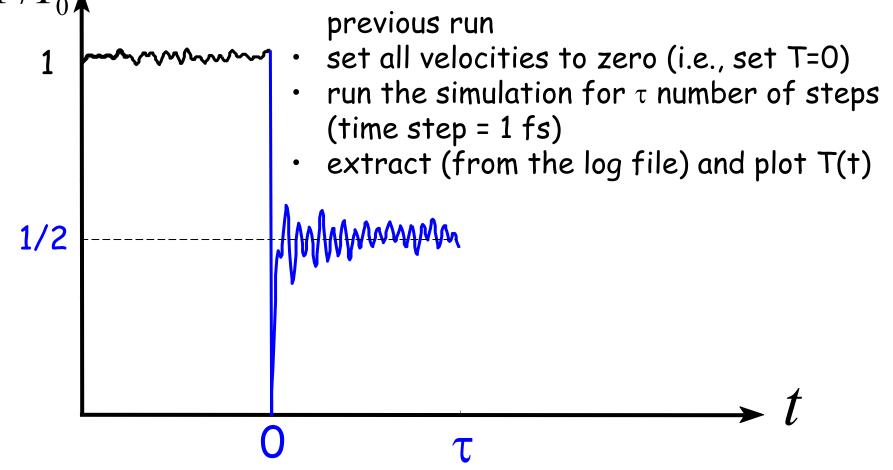
$$\langle T \rangle = 299 \, K$$

RMS temperature:

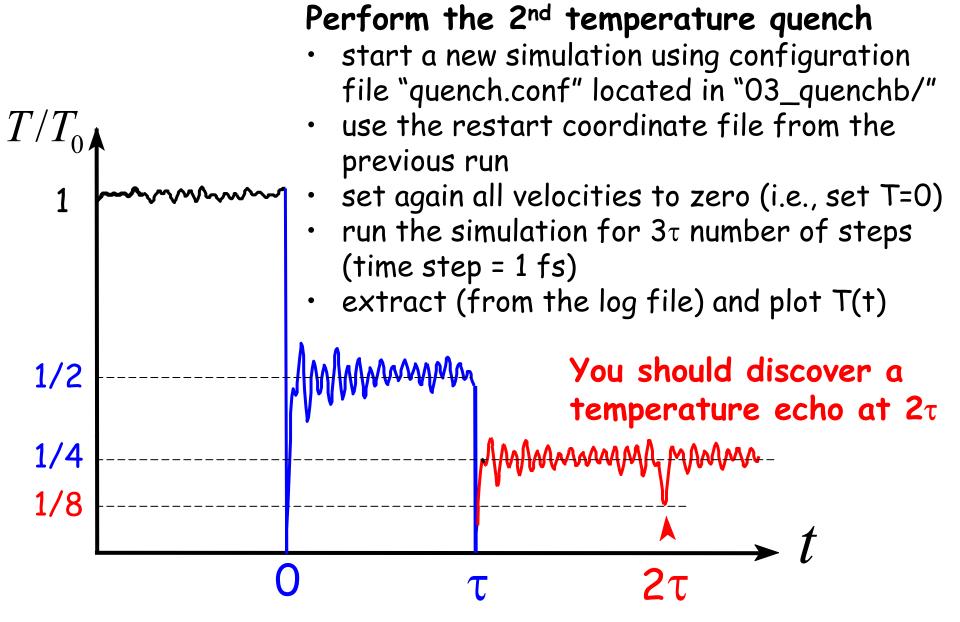
$$\sqrt{\left\langle \Delta T^2 \right\rangle} = \sqrt{C(0)} = 6 \, K$$

Generating T-Quench Echo: Step2

- start a new simulation using configuration file "quench.conf" located in "02_quencha/"
- use the restart coordinate file from the previous run



Generating T-Quench Echo: Step3



Explanation of the T-Quench Echo

<u>Assumption</u>: protein \approx collection of weakly interacting harmonic oscillators with dispersion $\omega = \omega_{\alpha}$, $\alpha = 1,...,3N-6$

Step1:
$$t < 0$$
 $x(t) = A_0 \cos(\omega t + \theta_0)$ $v(t) = -\omega A_0 \sin(\omega t + \theta_0)$

Step2:
$$0 < t < \tau$$

$$\begin{aligned} x_1(t) &= A_1 \cos\left(\omega t + \theta_1\right) \\ v_1(t) &= -\omega A_1 \sin\left(\omega t + \theta_1\right) \end{aligned} \xrightarrow{v_1(0)=0} \begin{cases} A_1 &= A_0 \cos\theta_0 \\ \theta_1 &= 0 \end{cases}$$

Step3:
$$t > \tau$$

$$\begin{aligned} x_2(t) &= A_2 \cos\left(\omega t + \theta_2\right) \\ v_2(t) &= -\omega A_2 \sin\left(\omega t + \theta_2\right) \end{aligned} \xrightarrow{v_2(\tau) = 0} \begin{cases} A_2 &= A_1 \cos \omega \tau \\ \theta_2 &= -\omega \tau \end{cases}$$

T-Quench Echo: Harmonic Approximation

for
$$t > \tau$$
: $T(t) \propto \langle v_2^2 \rangle = \langle \omega^2 A_0^2 \cos^2 \theta_0 \cos^2 (\omega \tau) \sin^2 (\omega (t - \tau)) \rangle$

The average must be taken over the distribution of initial phases θ_0 , amplitudes A_0 and angular velocities w

equipartition theorem
$$\Rightarrow \langle A_0^2 \cos^2 \theta_0 \rangle = \frac{1}{2} \langle A_0^2 \rangle = \frac{k_B T_0}{2 m \omega^2}$$

$$T(t) = T_0 \left\langle \cos^2(\omega \tau) \sin^2(\omega(t-\tau)) \right\rangle = \dots$$

$$= \frac{T_0}{4} \left[1 + \left\langle \cos(2\omega \tau) \right\rangle - \left\langle \cos(2\omega(t-\tau)) \right\rangle$$

$$- \frac{1}{2} \left\langle \cos(2\omega t) \right\rangle - \frac{1}{2} \left\langle \cos(2\omega(t-2\tau)) \right\rangle$$

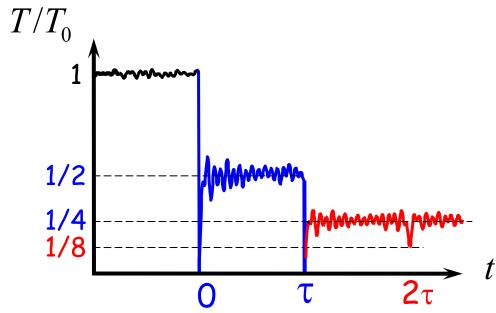
Since: $\langle \cos(\omega?) \rangle_{\omega} \approx 0$ unless $? = 0 \Rightarrow$

T-Quench Echo: Harmonic Approximation

$$T(t) \approx \frac{T_0}{4} \left[1 - \left\langle \cos\left(2\omega(t - \tau)\right) \right\rangle - \frac{1}{2} \left\langle \cos\left(2\omega(t - 2\tau)\right) \right\rangle \right]$$

$$\approx \begin{cases} 0 & \text{for } t = \tau \\ T_0/8 & \text{for } t = 2\tau \\ T_0/4 & \text{otherwise} \end{cases}$$

$$\Rightarrow$$
 echo depth = $T(2\tau) - T_0/4 = T_0/8$



T(t) and $C_{TT}(t)$

It can be shown that:

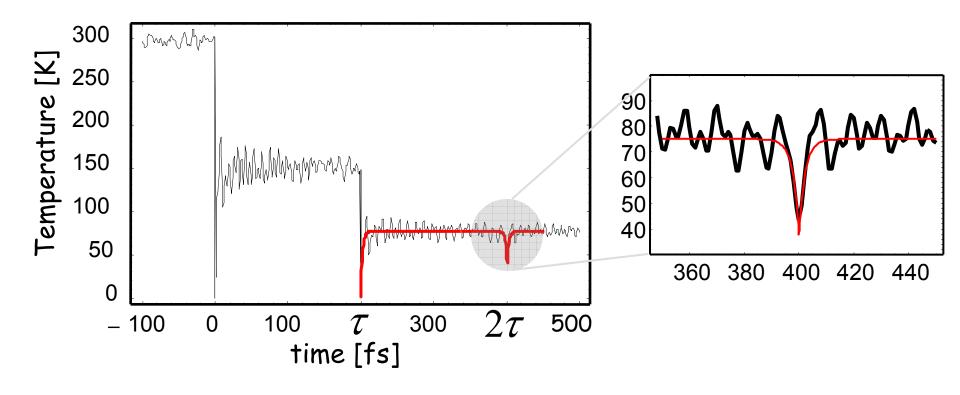
$$\left\langle \cos\left(2\omega t\right)\right\rangle = \frac{\left\langle \delta T(t)\,\delta T(0)\right\rangle}{\left\langle \Delta T^{2}\right\rangle} = C_{TT}(t)\,,\qquad \delta T(t) = T(t) - \left\langle T\right\rangle$$

$$\downarrow \downarrow$$

$$T(t) = \frac{T_{0}}{4} \left[1 + C_{TT}(\tau) - C_{TT}(t - \tau) - \frac{1}{2}C_{TT}(t) - \frac{1}{2}C_{TT}\left(\left|t - 2\tau\right|\right)\right]$$

$$\approx \frac{T_{0}}{4} \left[1 - \frac{1}{2}C_{TT}\left(\left|t - 2\tau\right|\right)\right] \quad for \quad t > \tau$$

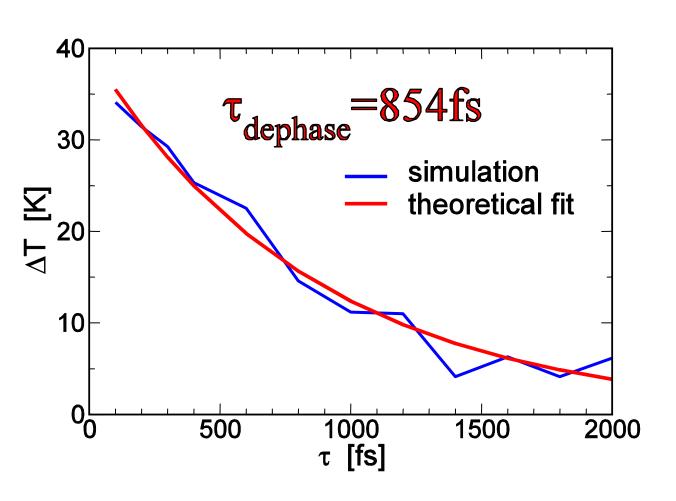
T-Quench Echo: Harmonic Approximation

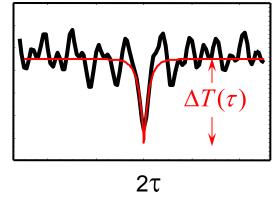


$$T(t) \approx \frac{T_0}{2} \left(1 - C_{TT}(t - \tau) - \frac{1}{2} C_{TT} \left(\left| t - 2\tau \right| \right) \right)$$

$$C_{TT}(t) = \exp\left(-t / \tau_0 \right), \qquad \tau_0 \approx 2.2 \text{ fs}$$

Dephasing Time of T-Quench Echoes



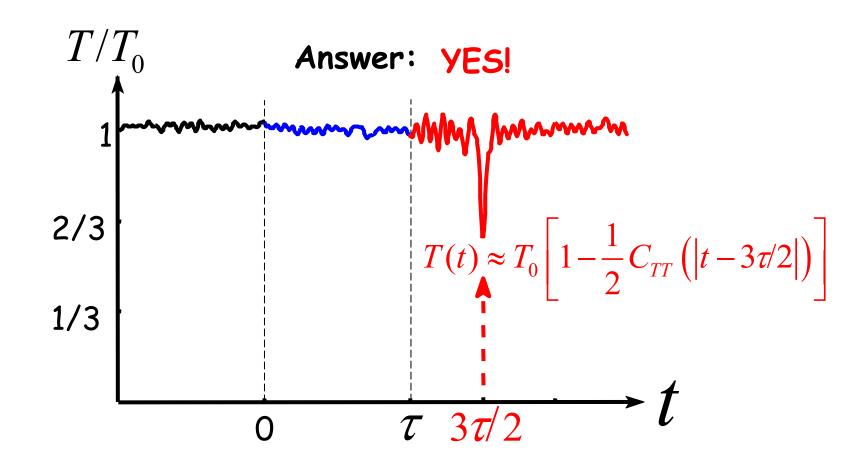


$$\Delta T(\tau) = \Delta T(0) \exp[-\tau / \tau_{dephase}]$$

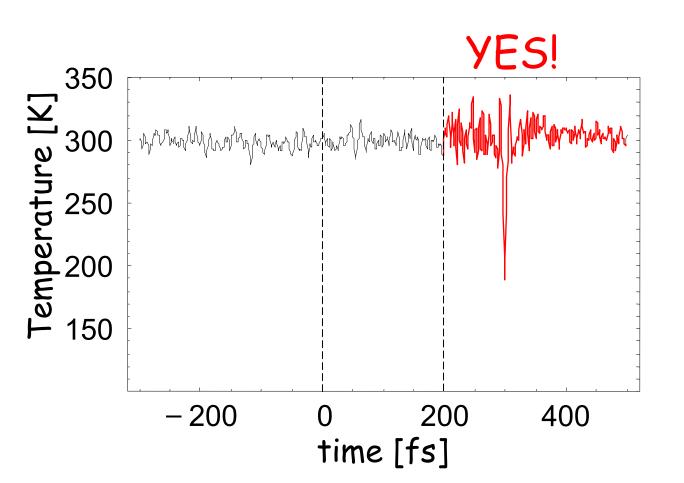
Constant Velocity Reassignment Echo?

Can we get temperature echo(es) by reassigning the same set of atomic velocities (corresponding to T_0 !)

at
$$t = 0$$
 and $t = \tau$? $v_i(0^+) = v_i(\tau^+) = u_i$, $i = 1,...,3N - 6$



Is it possible to produce temperature echo with a single velocity reassignment?



Reset all velocities at time τ to the values at a previous instant of time, i.e., t=0