Why the histidine biosynthesis pathway?
Why hisH-hisF?

De novo purine biosynthesis
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P. O’'Donoughue, R. Amaro, Z. Schulten, J Struct Biol, 134, 257 (2001)



HisH

All GATases coupled

to a second reaction
Catalytic triad active site requiring reactive NH,

CYS84 — HIS178 — GLU180
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Mutating conserved
gate residues drastically
reduces cyclase rxn
efficiency!
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Talk Outline

*Many interesting aspects: gating mechanism, NH; conduction,
allosteric effects, chemistry of catalytic reactions

*Main tools are molecular dynamics simulations and
bioinformatic analyses

» Highlights of the research on the apo-system

* Building active system requires parameterization of substrates

» New results regarding active-system



Ammonia Conduction

 Steered Molecular Dynamics (SMD) to induce NH; conduction on ns
timescale

» Apply an external force to the system:

H [z(t),t] = Ho [z(t)] + 0.5k [2(z) — 20 — vt]”
* To quantify the energetics of conduction we use:

Jarzynski’s Identity: E—ﬁ.&F — <E_ﬁﬁw>traj

 This new identity allows us to determine equilibrium information
from repeated nonequilibrium measurements



Dipole Order Parameter
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Results through partially open gate 1n apo-complex

Free energy profile of ammonia in barrel
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Mean First Passage Time Analysis:
Without substrates, passage of NH; ~ 110 ns
2 4 6 8 10 12 14 Overall this step is not rate limiting!

Channel Axis [angstroms]

R. Amaro, E. Tajkhorshid, Z. Luthey-Schulten, PNAS, 100, 7599 (2003)



We can model various functional states
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Modeling the active-complex: including substrates

HisH:
Glutamyl thioester intermediate corresponding to post-
NH; release state

Parameterization required for thioester linkage

cYyc "
HiskF:
N1-(5’-phosphoribulosyl)-formimino-5-aminoimidazole-4-
carboxamide ribonucleotide (... or PRFAR) cryo-trapped in hisF
active site”
Parameterization according to existing CHARMM protocol

NH;:

“O5P0

* Chaudhuri, Lange, Myers, Davisson, and Smith, Biochemistry, 2003; Myers, Jensen, Deras, Smith, and Davisson, Biochemistry, 2003.



Total Force (kcal/mol/AA)

Including substrates produced a surprising result!

Total Force vs. Position

4 6 8
Channel Axis (angstroms)

Same gate configuration, higher
barriers?!?




How could PRFAR change the energetics of conduction?

PRFAR introduces large electrostatic effects!



Net effect: a torque on ammonia’s dipole
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Electrostatic field from PRFAR makes it more difficult for NH, to flip orientations

R. Amaro and Z. Luthey-Schulten, Chem. Phys., June 2004, in press.



Modeling the active-complex: today’s tutorial




VMD to Attach the substrate GLN to the active site of hisH

CYS & GLN



Class | Potential Energy function

B = 2 kf;(b_bo)z + 2 k9(8_60)2

bonds angles

+ E %[l + cos(ngp — 0)]

dihedrals
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Non-bonded Interaction Terms
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From MacKerell



Class | Potential Energy function

B = 2 kf;(b_bo)z + 2 k9(8_60)2

bonds angles
V.
+ E —[1+ cos(n¢p — 0)]
dihedrals 2
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impropers

Non-bonded Interaction Terms
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From MacKerell Specify in topology file



Class | Potential Energy function

B =3 Bb {5 ) + EE](Q -@)2
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From MacKerell Specity 1n parameter file
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Creating a new topology file entry

Protein-
backbone j—-C

HM-H

HA-CA--CB--5G

HEB1G HE1GY

11G
| |
HAG-CAG--CBG--CEG--CDG=0
| |
| HBEZG
01G=CG
|

QZG-HOZG

H= _' G

/\/
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0

HG1 deleted from CYS and
the charge was moved to
SG (-0.23 +0.16=0.07) so
that the SG charge becomes
0.07 in final compound and
the group remains neutral

Changes annotated!



Creating new parameters

BONDE

!

IWibond) = Eb(b - BO)xx2
!

1¥b: kcal/mole/A®*2

Ib0: A

|

latom typs Kb b

I Modified for CYG residus after 5-31G# geomstry optimization

DIHEDRALS
I

i\l‘{dihedral:l = Kchi(l + cos(nichi) - delta))

=} o 240,000 1.7814 | ALLOW ALI SUL ION
!
ANGLES IKchi: keal/mole
| In: miltiplicity
1¥{angle) = Ktheta(Theta - Thetal)x*x2 ldelta: degress
! !
IWi{Urey-Bradley) = HKub(2 - 30)*x3 latom typss KEchi n delta
!
'Ktheta: keal/mole/Tad++2 g0 & QT2 CTi 0.2400 1  180.00
| Ihatad: degrees oo 8 CTz CTi 0.3700 3 0.00
i:g]f-.ﬂkcalfmnle,-’nt#ﬂ (Urey-Bradley) HA v oo 0 oE00 3 000
; ’ CT2 3 co CTZ2 2,06 2 180.00
latom types Ktheta Thetal Kub 30 €T2 8 cc o 2.08 2 180.00

I Modified for CYG residus after 831G+ geoms

CT2 8 cc 24,000 100 . 2000 ! ALLOW
CT2 QC 2 50,000 114 . 5000 | ALLOW
0 oc 2 TE.000 122 2000 | ALLOW

try optimization
KLT 3UL IOH

KLI SUL IOH

KLI SUL IDH



Semi-empirical Parameter Estimation Using

untitled 2:M1

SPARTAN

066 dele_prof:P.4

BEH -] sl e i
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3P '0-|=0|’s- =5
E (kealanoly

=H||=F |-Cl||-Br|| -1

IWolecuie

[o] [ - [41] [1¥] Energy: -43.305881 kcal/mal Sym: C1
Be careful with the dihedral drive section!

You build a part of CYG
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