Analyzing Ion channel Simulations

(Neher and Sakmann, Scientific American 1992)

Computational Patch Clamp (Molecular Dynamics)

Atoms move according to classical mechanics

Interaction between atoms is defined by molecular force field (AMBER95, CHARMM27) Time scale: up to 100ns

<u>Length scale</u>: up to 1,000,000 atoms or (< 20nm)³

Massive parallel computer (PSC Lemieux)

α -Hemolysin Channel

of Staphylococcus aureus

- Self-assembles from soluble monomers to form a transmembrane channel
- Stable over wide pH and temperature range
- Pore diameter: 1.3-2.6 nm

Setting up an α -hemolysin simulation

Computing conductance of α -hemolysin with molecular dynamics

Current-Voltage curve: excellent agreement with experiment

$$I(t) = \frac{1}{\Delta t L_z} \sum_{i=1}^{N} q_i (z_i (t + \Delta t) - z_i (t))$$

Instantaneous current

Current-Voltage curve: excellent agreement with experiment

Water Conductance

 $\mathrm{d}n = \sum \mathrm{d}z_i/L$ $i \in S(t)$

Collective coordinate of water molecules confined in the channel

<u>Osmotic permeability of αHL:</u> Experiment: 1.5x10⁻¹² cm/s Simulations: 1.8x10⁻¹² cm/s

Modulation of the current by the protonation state of His144

O pH 8.0 \square pH 4.5

Water can access His 144 !

(Aksimentiev, Biophys. J. 2005)

Changing the protonation states of seven His144 alters the channel conductance

Not ions alone!

Bacterial toxin α -hemolysin

a-hemolysin in a lipid bilayer

• Pore diameter: 1.3-2.6 nm

DNA permeation through α-

Kasianowicz *et al* (1996), Akeson *et al* (1999) Meller *et al* (2000), Howorka *et al* (2001)

360,000-atom MD simulation

Current blockades can identify the sequence of DNA

120

A. Meller, et al., PNAS, 97, 1079 (2000)

Current blockades of poly[dT]

Initial DNA conformations for MD simulations

MD simulations of blocked current

 $I_{blocked}/I_{open} = 47\%$ $I_{blocked}/I_{open} = 40\%$ $I_{blocked}/I_{open} = 15\%$

All simulations were carried at a 1.2 V bias, 295K

Translocation of DNA through alpha-hemolysin

When ssDNA is stretched, its bases align toward its 5' end

DNA is confined inside a shrinking pore DNA is stretched by pulling the O5' end

Pushing a DNA strand through a pore is ... like bringing a X-mass three through a door

ssDNA in a phantom pore

All-atom MD simulation of DNA translocation

MD correctly predicts the ratio of blocked currents

Simulation of Ion Conduction (here for Kv1.2)

Fatemeh Khalili Araghi Emad Tajkhorshid Klaus Schulten (2006)

Ionic current through single nanopore

- linear conductance
- wetting kinetics extremely slow
- ionic conductivity through a nanopore less than bulk for high concentrations.

MD simulation of nanopore conductivity at 1M KCI. Simulation time: 0.3 ns, V=1.4V

Ion Conduction and Electrostatic Maps

Alek Aksimentiev Marcos Sotomayor David Wells

Highlights: Volumetric data

Water density distribution computed using the volmap plugin

Distribution of the

electrostatic potential computed with the PMEpot plugin