Force Fields for MD simulations

- Topology/parameter files
- Where do the numbers an MD code uses come from?
- How to make topology files for ligands, cofactors, special amino acids, ...
- How to obtain/develop missing parameters.

Classical Molecular Dynamics

Classical Molecular Dynamics

Bond definitions, atom types, atom names, parameters,

Energy Terms Described in the CHARMm Force Field

The Potential Energy Function

 U_{bond} = oscillations about the equilibrium bond length U_{angle} = oscillations of 3 atoms about an equilibrium bond angle $U_{dihedral}$ = torsional rotation of 4 atoms about a central bond $U_{nonbond}$ = non-bonded energy terms (electrostatics and Lenard-Jones)

Interactions between bonded atoms

$$V_{angle} = K_{\theta} \left(\theta - \theta_o \right)^2$$

 $V_{bond} = K_b (b - b_o)^2$

Chemical type	K _{bond}	b _o
C-C	100 kcal/mole/Å 2	1.5 Å
C=C	200 kcal/mole/Å 2	1.3 Å
C=C	400 kcal/mole/Å 2	1.2 Å

Bond angles and *improper* terms have similar quadratic forms, but with softer spring constants. The force constants can be obtained from vibrational analysis of the molecule (experimentally or theoretically).

 $\delta = 0^{\circ}$

Nonbonded Parameters

$$\sum_{nonbonded} \frac{q_i q_j}{4\pi D r_{ij}} + \varepsilon_{ij} \left[\left(\frac{R_{\min,ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{R_{\min,ij}}{r_{ij}} \right)^6 \right]$$

- q_i: partial atomic charge
- D: dielectric constant
- ε: Lennard-Jones (LJ, vdW) well-depth

$$R_{\min i,j} = R_{\min i} + R_{\min j}$$

$$\varepsilon_{i,j} = SQRT(\varepsilon_i * \varepsilon_j)$$

Note that the effect is long range.

From MacKerell

Charge Fitting Strategy

CHARMM- Mulliken*

AMBER(ESP/RESP)

Partial atomic charges

*Modifications based on interactions with TIP3 water

File Format/Structure

- The structure of a pdb file
- The structure of a psf file
- The topology file
- The parameter file
- Connection to potential energy terms

<u>Structure of a PDB file</u>												
index	re name	sna	me \	:hain 1	re	șid	X Y	z		segr	name	
ATOM	22	N	ALA	в 3		-4.073	-7.587	-2.708	1.00	0.00	BH	
ATOM	23	HN	ALA	в 3		-3.813	-6.675	-3.125	1.00	0.00	BH	
ATOM	24	CA	ALA	в 3		-4.615	-7.557	-1.309	1.00	0.00	BH	
ATOM	25	HA	ALA	в 3		-4.323	-8.453	-0.704	1.00	0.00	BH	
ATOM	26	СВ	ALA	в 3		-4.137	-6.277	-0.676	1.00	0.00	BH	
ATOM	27	HB1	ALA	в 3		-3.128	-5.950	-0.907	1.00	0.00	BH	
ATOM	28	HB2	ALA	в 3		-4.724	-5.439	-1.015	1.00	0.00	BH	
ATOM	29	HB3	ALA	в 3		-4.360	-6.338	0.393	1.00	0.00	BH	
ATOM	30	С	ALA	в 3		-6.187	-7.538	-1.357	1.00	0.00	BH	
ATOM	31	0	ALA	в 3		-6.854	-6.553	-1.264	1.00	0.00	BH	
ATOM	32	Ν	ALA	B 4		-6.697	-8.715	-1.643	1.00	0.00	BH	
ATOM	33	HN	ALA	B 4		-6.023	-9.463	-1.751	1.00	0.00	BH	
ATOM	34	CA	ALA	B 4		-8.105	-9.096	-1.934	1.00	0.00	BH	
ATOM	35	HA	ALA	B 4		-8.287	-8.878	-3.003	1.00	0.00	BH	
ATOM	36	CB	ALA	B 4		-8.214	-10.604	-1.704	1.00	0.00	BH	
ATOM	37	HB1	ALA	B 4		-7.493	-11.205	-2.379	1.00	0.00	BH	
ATOM	38	HB2	ALA	B 4		-8.016	-10.861	-0.665	1.00	0.00	BH	
ATOM	39	HB3	ALA	B 4		-9.245	-10.914	-1.986	1.00	0.00	BH	
ATOM	40	С	ALA	B 4		-9.226	-8.438	-1.091	1.00	0.00	BH	
ATOM	41	0	ALA	B 4		-10.207	-7.958	-1.667	1.00	0.00	BH	
000000000000000000000000000000000000000												
	10		20		30		40	50		60	70	

>>> It is an ascii, fixed-format file <<<

"No connectivity information"

Checking file structures

- PDB file
- Topology file
- PSF file
- Parameter file

Parameter Optimization Strategies

Check if it has been parameterized by somebody else

Literature

Google

Minimal optimization

By analogy (i.e. direct transfer of known parameters) Quick, starting point

Maximal optimization

Time-consuming Requires appropriate experimental and target data

Choice based on goal of the calculations

Minimal database screening NMR/X-ray structure determination Maximal free energy calculations, mechanistic studies, subtle environmental effects

Getting Started

- Identify previously parameterized compounds
- Access topology information assign atom types, connectivity, and charges annotate changes

CHARMM topology (parameter files)

top_all22_model.inp (par_all22_prot.inp) top_all22_prot.inp (par_all22_prot.inp) top_all22_sugar.inp (par_all22_sugar.inp) top_all27_lipid.rtf (par_all27_lipid.prm) top_all27_na_rtf (par_all27_na_prm) top_all27_na_lipid.rtf (par_all27_na_lipid.prm) top_all27_prot_lipid.rtf (par_all27_prot_lipid.prm) top_all27_prot_na.rtf (par_all27_prot_lipid.prm) top_all27_prot_na.rtf (par_all27_prot_na.prm) toph19.inp (param19.inp) NA and lipid force fields have new LJ parameters for the alkanes, representing increased optimization of the protein alkane parameters. Tests have shown that these are compatible (e.g. in protein-nucleic acid simulations). For new systems is suggested that the new LJ parameters be used. Note that only the LJ parameters were changed; the internal parameters are identical

www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm