

Computational microscope views the cell

http://micro.magnet.fsu.edu/cells/animals/images/animalcellsfigure1.jpg

The living cell is a society of molecules: molecules assembling and cooperating bring about life!

100 - 1,000,000 processors

processors

Computational microscope views the cell

photosynthetic chromatophore (10⁸ atoms)

vesicle formed by BAR domains (5x10⁷ atoms)

View of blood clot elasticity atomic force microscope stretching fibrinogen computer simulation

processors

A Blood Clot Red blood cells within a network of fibrin fibers, composed of polymerized fibrinogen molecules.

B. Lim, E. Lee, M. Sotomayor, and K. Schulten. **Molecular basis of fibrin clot** elasticity. *Structure*, 16:449-459, 2008.

Application to Ribosome

X-ray crystallography

High resolution (3-5Å) Crystal packing makes it difficult to determine functional state

Cryo-EM

Lower resolution (typically 8-12Å) Many functional states can be obtained

Crystal structures of ribosome and ligands

30S and 50S from 2I2U/2I2V (Berk et al., 2006); L1 protuberance based on 1MZP (Nikulin et al., 2003); L1 protein using MODELLER (Sali and Blundell, 1993) with 1ZHO as template (Nevskaya et al., 2006); A-site finger using 1TWB (Tung and Sanbonmatsu, 2004) as template; tRNAs from Selmer et al., 2006; ternary complex from 1OB2 (P.Nissen ,unpublished) Structures of the ribosome at different stages of the elongation cycle obtained by Cryo-EM (J. Frank. The dynamics of the Ribosome inferred from Cryo-EM, in Conformational Proteomics of Macromolecular Architectures, 2004)

Application to Ribosome

X-ray crystallography

High resolution (3-5Å) Crystal packing makes it difficult to determine functional state

Cryo-EM

Lower resolution (typically 8-12Å) Many functional states can be obtained

Crystal structures of ribosome and ligands

30S and 50S from 2I2U/2I2V (Berk et al., 2006); L1 protuberance based on 1MZP (Nikulin et al., 2003); L1 protein using MODELLER (Sali and Blundell, 1993) with 1ZHO as template (Nevskaya et al., 2006); A-site finger using 1TWB (Tung and Sanbonmatsu, 2004) as template; tRNAs from Selmer et al., 2006; ternary complex from 1OB2 (P.Nissen ,unpublished) Structures of the ribosome at different stages of the elongation cycle obtained by Cryo-EM (J. Frank. The dynamics of the Ribosome inferred from Cryo-EM, in Conformational Proteomics of Macromolecular Architectures, 2004)

Hybrid Microscopy with X-rays, Electrons, and Bits

X-ray crystallography

APS at Argonne

L. Trabuco, E. Villa, K. Mitra, J. Frank, and K. Schulten. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. *Structure*, 16:673-683, 2008.

National Center for Research Resources

supercomputer

Center for the Physics of Living Cells

Electron microscopy

FEI microscope

Computational microscope recognizes atomic resolution picture of ribosome in action

300,000 atoms structurally assigned

processors

Current MDFF Applications

Genetic decoding [1] J. Frank (Columbia U.)

Protein translocation [6,8] C. Akey (Boston U.) R. Beckmann (U. Munich)

Regulatory nascent chain [7] *R. Beckmann (U. Munich)*

Ribosome ratcheting J. Frank (Columbia U.) T. Ha (UIUC)

[1] Trabuco et al. *Structure* (2008) 16:673-683.
[2] Villa et al. *PNAS* (2009) 106:1063-1068.
[3] Sener et al. *Chem Phys* (2009) 357:188-197.
[4] Trabuco et al. *Methods* (2009) 49:174-180.
[5] Hsin et al. *Biophys J* (2009) 97:321-329.
[6] Gumbart et al. *Structure* (2009) 17:1453-.1465.
[7] Seidelt et al. *Science* (2009) 326: 1412-1415.
[8] Becker et al. *Science* (2009) 326: 1369-1373.

Poliovirus J. Hogle (Harvard U.)

Flagellar hook K. Namba (Osaka U.)

B. pumilus cyanide dihydratase *T. Sewell (U. Cape Town)*

Membrane curvature [3,5] N. Hunter (Sheffield U.)

processors

Computational microscope recognizes atomic resolution picture of photosynthetic apparatus

Molecular Dynamics Flexible Fitting (MDFF) Simulation

- In an MDFF simulation, RC-LH1-PufX dimer atoms are steered into high-density regions of the EM map
- 5 ns of MDFF, followed by a 29 ns of equilibration was performed

- The entire lipid patch became arched
- Curvature is anisotropic
- Lipid patch is "twisted"

Jen Hsin, James Gumbart, Leonardo G. Trabuco, Elizabeth Villa, Pu Qian, C. Neil Hunter, and Klaus Schulten. **Protein-induced membrane curvature investigated through molecular dynamics flexible fitting**.*Biophysical Journal*, 97:321-329, 2009.

NIH Resource for Macromolecular Modeling and Bioinformatics http://www.ks.uiuc.edu/ Beckman Institute, UIUC

LH2 Packing Induces Curvature

Rps. spheroides (forms sphere) LH2s form spheres

But, Rsp. rubrum (forms disks) LH2s are flat

0

0

0

0

0

Side view after 14 ns

NAMD leaders

S. Kumar (IBM)

fibrinogen

B. Lim (Mayo)

lipoprotein

L. Kale J. Phillips

E. Lee

A. Shih

Acknowledgements

10 μs folding P. Freddolino *M. Gruebele (UIUC)*

BAR domain Y. Yin A. Arkhipov

Chromatophore

J. Hsin D. Chandler JC. Gumbart J. Strumpfer M. Sener

ribosome

Elizabeth Villa L. Trabucco J. Gumbart *J. Frank (Columbia U.) R. Beckman (Gene Center Munich)*

S. Sligar (UIUC) Funding: NIH, NSF

National Center for Research Resources

DOE - Incite

