Part II - Applications of MultiSeq Evolution of Translation: Dynamics of Recognition in RNA:Protein Complexes

Part III – Towards in silico Cells: Simulating processes in entire cells

Zaida (Zan) Luthey-Schulten Dept. Chemistry, Physics, Beckman Institute, Biophysics, Institute of Genomics Biology NIH Resource Macromolecular Modeling and Bioinformatics Pittsburgh Workshop 2011

(5) Dunbrack Jr. and Cohen. Protein Sci. (1997)

C G

G AUG

ANTICODON LOOP

GC

- Signatures are sequence and/or structural features that are characteristic of a domain of life*.
- Identify the sequence signatures in the 16S rRNA and proteins using MultiSeq
- MultiSeq has a coloring based on signatures, but use Scripts to collect quantitative data about the signatures: position, composition.
- Signature analysis can be applied to any set of sequences/groupings

* E. Roberts, A. Sethi, J. Montoya, C. Woese, Z Luthey-Schulten (2008) PNAS

Signature script output						
rdered Signatures Pos Ecoli Ttherm Hmaris				Archaea	Bacteria	
35	33	33	27	U(28%)/C(72%)	*A(96%)	
42	39	39	33	*U(100%)	*G(95%)	
51	47	47	42	*G(97%)	C(85%)/U(7%)/G(8%)	
59	53	53	49	*C(100%)	A(83%)/G(14%)	
222	113	106	87	*C(100%)	*G(95%)	
661	248	243	227	*G(97%)	C(75%)/G(9%)/U(11%)	
749	314	309	293	*G(100%)	*C(97%)	
753	317	312	296	*G(97%)	*U(91%)/G(7%)	
777	338	333	317	*G(97%)	A(89%)/N(9%)	
779	339	334	318	*G(97%)	*C(98%)	
780	340	335	319	*C(94%)	*U(92%)/A(6%)	
790	349	344	328	G(86%)/N(11%)	*A(92%)	
791	350	345	329	C(67%)/U(19%)/N(11%)	*G(98%)	
800	358	353	337	*G(100%)	*U(91%)/C(7%)	
802	359	354	338	*C(97%)	G(59%)/U(9%)/C(9%)/A(20%)	
804	361	356	340	*C(94%)	G(84%)/A(14%)	
809	365	360	344	*A(92%)/U(8%)	*U(97%)	
811	367	362	346	C(83%)/G(14%)	*U(97%)	
823	377	372	356	C(89%)/U(11%)	*G(92%)	
833	386	381	365	*G(94%)	C(89%)/U(6%)	
840	393	388	372	G(83%)/C(14%)	*A(97%)	
851	403	398	382	*A(100%)	C(89%)	
920	447	441	416	C(31%)/U(67%)	*G(92%)	
990	487	471	424	G(89%)/A(8%)	*A(91%)	
1083	508	491	446	*A(97%)	*U(92%)	
1085	510	493	448	*G(97%)	*A(97%)	
1087	512	495	450	*C(92%)/U(8%)	*U(97%)	
1089	514	497	452	*G(92%)/N(6%)	C(89%)/U(8%)	
1101	523	506	461	*C(94%)/A(6%)	*A(96%)	
1119	537	520	475	*C(100%)	*G(91%)/A(8%)	
1121	539	522	477	*G(92%)/A(6%)	A(89%)/G(10%)	
1134	549	532	487	*U(94%)	*C(99%)	

Draw signature figure (cont)

VMD/MultiSeq Tutorials

- 1. Evolution of Translation: AARS:tRNA
- 2. Evolution of Translation: EF-Tu:tRNA
- 3. Evolution of Translation: Ribosome
- 4. Dynamical Network Analysis
- 5. Participant's project

Acknowledgements **Collaborators** Students/Postdocs **Carl Woese** Alexis Black Mike Heath Ke Chen John Eargle Li Li Martin Gruebele **Piyush Labhsetwar** Taekjip Ha Jonathan Montoya Sarah Woodson **Elijah Roberts** Susan Martinis Anurag Sethi Wen-Mei Hwu Dan Wright Mike Hallock John Stone Julio Ortiz, W. Baumeister NIH, BI, NSF, DOE & Nvidia Cuda Center of Excellence NIH Resource for Macromolecular Modeling and Bioinformatics, Beckman Institute, UIUC - John Stone, Kirby Vandivort

Part III Towards in silico cells: Simulating processes in entire bacterial cells

See also Mcell

Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces

RA Kerr, TM Bartol, B Kaminsky, M Dittrich, JC Chang, SB Baden, TJ Sejnowski, and JR Stiles SIAM J Sci Comput 30,3126 (2008)