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Serving the large and fast growing
community of biomedical researchers
employing molecular modeling and
simulation technologies
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Serving a large and growing community
of biomedical researchers employing molecular modeling
and simulation technologies
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Serving a Large and Fast Growing Community

« Deploying Center’s flagship programs NAMD
and VMD on all major computational platforms
from commodity computers to supercomputers

e Consistently adding user-requested features
e simulation, visualization, and analysis

e Covering broad range of scales (orbitals to cells)
and data types

 Enhanced software accessibility

e QwikMD, interactive MDFF, ffTk, simulation
in the Cloud, remote visualization
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Why Structural Biology at Nanoscale”

4+ Mechanisms in Molecular Biology
4+ Molecular Basis of Disease
4+ Drug Design

4+ Nano-biotechnology

Antidepressant binding site in a neurotransmitter transporter.
Nature 448: 952-956 (2007)
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Binding of a small molecule to a binding site
Y. Wang & E.T. PNAS 2010



Why Structural Biology at Nanoscale”

0.00 us

Dror et al., PNAS 2011

Drug binding to a GPCR
Dror, ..., Shaw, PNAS, 108:13118-13123 (2011)



Why Structural Biology at Nanoscale”

4+ Mechanisms in Molecular Biology
4+ Molecular Basis of Disease
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Structural changes underlying function
M. Moradi & E. T. PNAS 2013
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Structural changes underlying function
M. Moradi, G. Enkavi, & E. T. Nature Comm. 2015
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HIV subtype
identification

Lab Chip 2012
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Functionalized nanosurface with antibodies

Created by nanoBIO Node tools



Nano-biotech
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Applications of Computational Methodologies to
Structural Biology

Simulation of the dynamics of the molecular

system (MD)

e (Calculating ensemble-averaged properties
of microscopic systems to compare to
macroscopic measurements

* Providing a molecular basis for function

* Describing the molecular/structural changes
underlying function Hydration at the interface of viral shell proteins

Membrane binding of a coagulation protein

Thermal fluctuations of a phospholipid bilayer



S. Mansoor,

Lipid Protein Interaction
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..., E. Tajkhorshid, E. Gouaux, Nature, 2016.



Characterizing Energy Landscapes Associated with Functional Motions of Proteins

Outward-facing (OF) to Inward-facing (IF) Transition

Free
Energy

(kcal/mol)
8
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Orientatio”

Translation (A)
Moradi and Tajkhorshid PNAS 2013

Moradi, ..., Tajkhorshid Nat. Comm. 2015
Verhalen, ..., Tajkhorshid, Mchaourab, Nature 2017

String method and Bias-exchange
umbrella sampling



Molecular Dynamics Simulations

step

Major limitations:
= Time scale / sampling

= Force field approximations

Major advantage:

resolutions, simultaneously

Solving the Newtonian equations of
motion for all particles at every time
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» Unparalleled spatial and temporal



QwikMD- Gateway to Easy Simulation

Protein Data Bank Structure I

Select Chain / Molecule
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Ribeiro, J. V., ..., Schulten, K.. QwikMD — Integrative Molecular Dynamics Toolkit for
Novices and Experts. Sci. Rep. 6, 26536; doi: 10.1038/srep26536 (2016)



Applications of Computational Methodologies to
Cell-Scale Structural Biology

Using computational methods as
“structure-building” tools

All experimental Structural biological
approaches heavily rely on
computational methods to analyze their
data

« NMR

o X-ray

* Electron Microscopy

Structural model of HIV virus



Molecular Dynamics Flexible Fitting (MDFF)

Electron (Ribosome-bound YidC) APS

Microscope Synchrotron

cryo-EM density
map

crystallographic
structure

[1] Trabuco et al. Structure (2008) 16:673-683.
[2] Trabuco et al. Methods (2009) 49:174-180.



Molecular Dynamics Flexible Fitting (MDFF)

Integrating experimental data to
produce models of biomolecular
complexes with atomic detail
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[1] Trabuco et al. Structure (2008) 16:673-683.
[2] Trabuco et al. Methods (2009) 49:174-180.



Technology Made Highly Accessible to the

VMDD 1.9.3ab vupenuL vispilay
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Applications of Computational Methodologies to
Cell-Scale Structural Biology

Using simulations as a “structure-building” tool

The most detailed model of a chromatophore Computational model of a minimal cell envelope



Automated Protein Embedding into Complex Membrane Structures

Vesicle Construction Coarse Grain Protein CG Protein Placement ~ Combine Lipid + Protein

Distribution of proteins across the membrane surface
(dense environment)
- Ability the handle a variety of protein geometries
- Proper orientation of proteins in relation to the
membrane surface
- Generalizable and automated method for
membranes of arbitrary shape
Embedding proteins into the membrane
- Account for surface area occupied by proteins in
inner and outer leaflets
* Proper lipid packing around embedded proteins 2
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113 million Martini particles
representing 1 billion atoms

Protein Components Copy 7

@ Aquaporin Z 97
@ Copper Transporter (CopA) 166
@ 1 ATPase 63
@ Lipid Flipase (MsbA) 29
@ Molybdenum transporter (ModBC) 130
O Translocon (SecY) 103
@ Methionine transporter (MetNI) 136
@ Membrane chaperon (YidC) 126
@ Energy coupling factor (ECF) 117
© Potassium transporter (KtrAB) 148
O Glutamate transporter (Gltr) 41
@ Cytidine-Diphosphate diacylglycerol (Cds) 50
@ Membrane-bound protease (PCAT) 57
@ Folate transporter (FolT) 134

1,397

3.7 M lipids (DPPC), 2.4 M Na+ & CI- ions,
104 M water particles (4 H20 / particle)



Applications of Computational Methodologies to
Cell-Scale Structural Biology

Using simulations as a “structure-building” tool

experimental

Fully detaile
model

A bioenergetic membrane




Applications of Computational Methodologies to
Cell-Scale Structural Biology

Guided Construction of Membranes from Experimental Data
Experimentally-Derived Membrane of Arbitrary Shape Builder

Terasaki Ramp
~4 Billion Atoms

A === Quter Leaflet
=== |nner Leaflet

=== Cholesterol

~1.59um
O
S

O Sphingomyelin

y @ Cardiolipin

Keenan and Huang, J. Dairy Sci., 1972.

Terasaki et al., Cell, 2013.



Applications of Computational Methodologies to
Cell-Scale Structural Biology

Guided Construction of Membranes from Experimental Data
Experimentallv-Derived Membrane of Arbitrarv Shape Builder

Terasaki Ramp
~4 Billion Atoms

=== Quter Leaflet
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=== Cholesterol

O Sphingomyelin
@ Cardiolipin
Keenan and Huang, J. Dairy Sci., 1972.

Terasaki et al., Cell, 2013.



