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ProDy: Usage and dissemination statistics

Date Releases Downloads1 Visits2 Unique3 Pageviews2 Countries5

Nov’10 - Oct’11 19 8,530 8,678 2,946 32,412 45

Nov’11 - Oct’12 6+9* 35,108 16,472 6,414 71,414 59

Nov’12 - Oct’13 8* 87,909 19,888 8,145 86,204 66

Nov’13 - Oct’14 5* 140,101 24,134 11,170 112,393 69

Nov’14 - May’15 1* 68,230 15,941 8,479 66,641 50

June ’15- June‘16 5* 124,613 32,491 15,402 140,818 132

June’16- June 17 31,374 16,201 129,900 136

Total 53+ 464,491+ 148,978 68,757 639,782 136

* Indicates software release made during the grant period.
1 Download statistics retrieved from PyPI (https://pypi.python.org/pypi/ProDy) using 

(https://pypi.python.org/pypi/vanity).
2 Google Analytics (www.google.com/analytics) was used to track:
3 Unique indicates number of unique visitors; 
5 Country of origin for visits.

https://pypi.python.org/pypi/vanity
http://www.google.com/analytics


Usage in the last year
Google Analytics

June 1, 2016 – June 1, 2017



Who? Where?
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June 1, 2016 – June 1, 2017



Tutorials

Day 1
http://prody.csb.pitt.edu/tutorials/

ProDy NMWiz

Evol

Druggability

Day 2



Workshop files on ProDy website
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Representation of structure as a network

Why network models?

for large systems’ collective 

motions & long time processes beyond 

the capability of full atomic simulations

to incorporate structural data in 

the models – at multiple levels of 

resolution

to take advantage of theories 

developed in other disciplines:  

polymer physics, graph theory, spectral 

graph methods, etc.http://www.lactamme.polytechnique.fr/



Proteins are not static: 

They move, breath, work, dance, interact with each other 

Local motions



Proteins are not static: 

They move, breath, work, dance, interact with each other 

Global motions



Many proteins are molecular machines

STMV dynamics (Zheng Yang)

And mechanical properties become more important in complexes/assemblies



Each structure encodes a unique dynamics
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Structure              Dynamics              Function  

Signaling dynamics of AMPARs and NMDARs

domain/subunit motions

Concerted movements of signaling molecules

DuttaA, Krieger J, Lee JY, Garcia-Nafria J, Greger IH, Bahar I (2015) Cooperative Dynamics of Intact AMPA and NMDA 

Glutamate Receptors: Similarities and Subfamily-Specific DifferencesStructure 23: 1692-170

http://www.sciencedirect.com/science/article/pii/S0969212615002828


GOAL: TO GENERATE DATA FOR MESOSCOPIC SCALE

16

Molecular modeling & Sim

(ENM, PGM, WE)

Subcellular: Spatial/network

(MCELL & BioNetGen)
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Analytical methods & Critical assessment
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Cell/Tissue: Images/circuits

(Cell Organizer, SLML & VVFS)

Developing integrated methodology to 

enable information transfer across scales

1
3
n
m

from molecules

Microphysiological simulations

to subcellar events

from 6 x 6 x 5 μm3 sample of adult rat 

hippocampal stratum radiatum neuropil
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Molecular modeling & Sim

(ENM, PGM, WE)

Subcellular: Spatial/network

(MCELL & BioNetGen)
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Analytical methods & Critical assessment

Subcellular: Spatial/network

(MCELL & BioNetGen)

Accelerated MD, 

Brownian simulations

Coarse-grained approaches

Elastic Network Models
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Developing integrated methodology for complex systems dynamics, to enable 

information transfer across scales

Molecular simulations



Each structure encodes a unique dynamics
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NMR

fs ps ns                 ms               ms s                

bond 

vibrations

sidechain

motions

time scales
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)

atomic simulations

10-7

10-8

10-9

10-10

10-11

X-ray

domain/subunit motions

loop motions

Cooperative machinery

QC/MM Coarse-grained computations

Structure              Dynamics              Function  



Summary
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1. Theory
a. Gaussian Network Model (GNM)
b. Anisotropic Network Model (ANM)
c. Resources/Servers/Databases (ProDy, DynOmics)

2. Allosteric Changes in Structure

3. Ensemble analysis. Experiments vs Predictions 
Adaptability/evolution

4. Recent Extensions and Applications
a. Membrane Proteins 
b. AMPA Receptor
c. Chromatin



Two elastic network models:
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Gaussian Network Model (GNM)
o Li H, Chang YY, Yang LW, Bahar I (2016) iGNM 2.0: the Gaussian network 

model database for bimolecular structural dynamics Nucleic Acids Res 44: D415-
422

o Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in 
protein Folding & Design 2: 173-181.

Anisotropic Network Model (ANM)

o Eyal E, Lum G, Bahar I (2015) The Anisotropic Network Model web server at 
2015 (ANM 2.0) Bioinformatics 31: 1487-9

o Atilgan AR, Durrell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I 
(2001) Anisotropy of fluctuation dynamics of proteins with an elastic network 
model Biophys J 80: 505-515.

http://www.ncbi.nlm.nih.gov/pubmed/26582920?dopt=Abstract
http://www.ccbb.pitt.edu/Faculty/bahar/publications/99.pdf
http://bioinformatics.oxfordjournals.org/content/early/2015/01/19/bioinformatics.btu847.long
http://www.ccbb.pitt.edu/Faculty/bahar/publications/143.pdf


Physics-based approach

Statistical Mechanics of Polymers

Theory of Rubber Elasticity

Paul J. Flory (1910-1985)

Nobel Prize in Chemistry 1974
Elastic Network Model for Proteins

And Pearson (1976),  Eichinger (1980), Klockzkowski, Erman & Mark (1989)…



Collective motions

i

j
Rij

Eigenvalue decomposition of 

Kirchhoff/Hessian matrix 

mode 1 mode 2 

A B 

1 4 

3 2 

1 4 

3 2 

Bahar, Lezon, Yang & Eyal (2010) Global Dynamics of Proteins: Bridging Between Structure  and Function Annu Rev Biophys 39: 23-42

GNM: Bahar et al Fold & Des 1996; Haliloglu et al. Phys Rev Lett1997 

ANM: Doruker et al. Proteins 2000;  Atilgan et al, Biophys J 2001

Based on theory of elasticity for 

polymer networks by Flory, 1976

file:///C:/Users/bahar/Desktop/Seminars/1ake_network.mov
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Each node represents a residue

Residue positions, Ri, identified by 

a-carbons’ coordinates

Springs connect residues located 

within a cutoff distance (e.g., 10 Å) 

 Nodes are subject to Gaussian 

fluctuations DRi

 Inter-residue distances Rij also 

undergo Gaussian fluctuations

 DRij = DRj - DRi

Bahar, Atilgan & Erman, Fold & Des 1997

Gaussian Network Model (GNM)

Fluctuations in residue positions

Rk k
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Fluctuation vector:

DR =

Bahar, Atilgan & Erman, Fold & Des 1997

Fluctuations in residue positions

DR1

DR2

DR3

DR4

..

..

..

..

DRN

Rk k

Gaussian Network Model (GNM)



Rij
0

Rij
(k)

Ri
0

Rj
0

DRi
(k)

DRj
(k)

dij/2

- dij/2

X

Y

Z

DRij = DRj - DRi



5/30/2017

Instantaneous deviation for atom i

DRi(tk) = Ri(tk) - Ri(0)

Fluctuation
with respect to  starting structure R(0)

Under equilibrium conditions:

Average displacement from equilibrium: < DRi(tk)> = 0

But the mean-square fluctuation (MSF), < (DRi(tk))
2> ≠ 0



Rouse model for polymers

Kirchhoff matrix

Vtot = (g/2) [ (DR12)2  + (DR23)2  + ........ (DRN-1,N)2 ]

DR12 = R12- R12
0

Classical bead-and-spring model

   =  

  1
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-1
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-1
 2
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.. ...
-1
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-1

 
-1
 1  

= (g/2) [ (DR2 – DR1)2  + (DR3 – DR2)2   + ........  

Force constant



Rouse model for polymers

Kirchhoff matrix

Vtot = (g/2) [ (DR12)2  + (DR23)2  + ........ (DRN-1,N)2 ]
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Rouse model for polymers

Kirchhoff matrix

Vtot = (g/2) [ (DR12)2  + (DR23)2  + ........ (DRN-1,N)2 ]

   =  

  1

-1
-1
 2
-1

-1
 2

 

-1

.. ...
-1
 

 
2
-1

 
-1
 1  

= (g/2) [ (DR2 – DR1)2  + (DR3 – DR2)2   + ........  

[DR1    DR2   DR3  ….   DRN](g/2)
=

Fluctuation vector

DR1

DR2

DR3

DR

N

Vtot= (g/2) DRT  DR
Force constant
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Kirchhoff matrix for inter-residue contacts

 =

 provides a complete description of contact topology!

1 N

N

1

For a protein of N residues

-1 if rik < rcut

0 if rik > rcut
ik=

ii = - Sk ik

Vtot= (g/2) DRT  DR
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Statistical mechanical averages

 provides a complete description of contact topology!

For a protein of N residues

  DDDDD


 
TkV

j  iNj  i deZ B RRRRR  . .  )()/1(
/

 ijB Tk 1)/3(  g



[-1]ii ~ <(DRi)
2>

Kirchhoff matrix determines the mean-square fluctuations

And cross-correlations between residue motions

[-1]ij ~ <(DRi .DRj)>

weizmann-lecture.ppt
weizmann-lecture.ppt


Comparison with B factors

 X-ray crystallographic structures deposited in 
the PDB also report the B-factors (Debye-
Waller factors) for each atom, in addition to 
atomic coordinates

 B-factors scale with mean-square fluctuations 
(MSFs), i.e. for atom i, 

Bi = [8p2/3] <(DRi)
2> 

33

How do residue MSFs compare with the B-factors? 



Output from DynOmics
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Example: 1vaa
PDB title: CRYSTAL STRUCTURES OF 
TWO VIRAL PEPTIDES IN COMPLEX 
WITH MURINE MHC CLASS I H-2KB

1vaa

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol
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Output from DynOmics

1vaa

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol


 
 

B-factors are affected by crystal contacts

Two X-ray structures for a designed sugar-binding protein LKAMG



  
 

Liu, Koharudin, Gronenborn & Bahar (2009) Proteins 77, 927-939.

Particular loop motions are curtailed by intermolecular contacts in the crystal 

environment causing a discrepancy between theory and experiments 

Liu, Koharudin, Gronenborn & Bahar (2009) Proteins 77, 927-939.

FOR MORE INFO...

B-factors are affected by crystal contacts



 

Agreement between theory and experiments upon 

inclusion of crystal lattice effects into the GNM

Liu, Koharudin, Gronenborn & Bahar (2009) Proteins 77, 927-939.

FOR MORE INFO...

Particular loop motions are curtailed by intermolecular contacts in the crystal 

environment causing a discrepancy between theory and experiments 

Crystal contacts

theory



Application to hemoglobin

0

10

20

30

40

50

0 50 100 150 200 250 300

a -subunit

theoretical B-factor

experimental B-factor

residue number

 -subunit

B- factors – Comparison with experiments 

C. Xu, D. Tobi and I. Bahar (2003) J. Mol.  Biol. 2003, 153-168 

 

 

 

Intradimer cooperativity – Symmetry rule (Yuan 

et al. JMB 2002;  Ackers et  al. PNAS 2002.)



Cross-correlations
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- Provide information on the relative movements of pairs of 

residues

- Purely orientational correlations (correlation cosines) are 

obtained by normalizing cross-correlations as

<(DRi .DRj)>  

[<(DRi)
2> <(DRi)

2>]1/2
-1 ≤ ≤ 1

Fully 

anticorrelated

Fully 

correlated



Output from iGNM
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1cot

Li, Chang, Yang and Bahar (2016)

Nucleic Acids Res 44: D415-422



Output from DynOmics - ENM

42

1vaa

Li et al (2017) Nucleic Acids Res 44: D415-422

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol


Cross-Correlations
may be organized in a 

Covariance Matrix C

43

-1 ~ C
Covariance scales with the 

inverse of the Kirchhoff 

matrix. 

The proportionality 

constant is 3kT/g



Covariance matrix (NxN)

DR1 . DR1> DR1 . DR2> ... ... DR1 . DRN>

DR2. DR1> DR2. DR2>

...

...

DRN . DR1> DRN. DRN>

C =

DR = N-dim vector of instantaneous fluctuations DRi for all residues (1 ≤ i ≤ N) 

< DR1 . DR1> = ms fluctuation of site 1 averaged over all m snapshots.

= DR DRT



Collective Motions Encoded by the 

Structure:    Normal Modes

45
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expressed in terms of kth eigenvalue lk and kth eigenvector uk of 

Bahar et al. (1998) Phys Rev Lett. 80, 2733

FOR MORE INFO...

 
ij

T

kkkBkji Tk uuRR
1

)/3(]ΔΔ[


• lg

Several modes contribute to dynamics

 
ijBji Tk

1
)/3(ΔΔ


 • ΓRR g

kji

k

ji ]ΔΔ[ΔΔ RRRR •• 

Contribution of mode k

Contribution of mode k



47Bahar et al. (1998) Phys Rev Lett. 80, 2733

Slowest (global) modes (most 
collective and softest)  function

Fastest (local) modes (at highest 
packing density regions)  stability

FOR MORE INFO...

Several modes contribute to dynamics

The first mode selects 

the ‘easiest’ collective motion



Output from DynOmics
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1vaa

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol


Output from DynOmics
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1vaa

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol


Summary - Gaussian network model (GNM)

 =

1 N

N

1

Several modes of motion 

contribute to dynamics

Kirchhoff matrix for inter-residue contacts

 
ii

T

kkkBkii Tk uuRR
1

)/3(]ΔΔ[


• lg

Contact: Rij < 10Å

 iiBi TkR 12
3

D )/()( gMSF of residue i

= <(DRi)2>



Recipe (GNM)
Obtain the coordinates of network nodes from the PDB
Write the corresponding Kirchhoff matrix 
Eigenvalue decomposition of  yields 

the eigenvalues l1, l2, l3,….., lN-1 (and l0 = 0) 
and eigenvectors u1, u2, u3,…..uN-1 (and u0)

Properties

the eigenvalues scale with the frequency squared (li ~ wi
2)

eigenvector uk is an N-dim vectors
the ith element of uk represents the displacement of node i in mode k
the eigenvectors are normalized, i.e. uk • uk = 1 for all k
as such, the squared elements of uk represent the ‘mobility’ distribution
dynamics results from the superposition of all modes
lk

-1/2 serves as the weight of uk  low frequency modes have high weights
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ignm.ccbb.pitt.edu

Database of GNM results

Li, Chang, Yang and Bahar (2016)

Nucleic Acids Res 44: D415-422
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Easy access to precomputed results for 

95% of the PDB including 

the largest structures beyond the 

scope of MD

protein-DNA/RNA complexes

biological assemblies (intact, 

biologically functional structures)

Easy to understand, visualize, make 

functional inferences for any structure

13.9% of the structures in 

the iGNM 2.0 (14,899 out of 

107,201) contain >103 nodes

The biological assembly of 39,505 

PDB structures is different from the  

default structure reported in the 

PDBs (as asymmetric unit)

Why use iGNM2.0? 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=4702874_gkv1236fig1.jpg
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Collectivity (2D) for a given mode k is a measure of the degree of 

cooperativity (between residues) in that mode, defined as (*)

where, k is the mode number and i is the residue index. A larger 

collectivity value refers to a more distributive mode and vice versa. 

Usually soft modes are highly collective. 

(*) Brüschweiler R. Collective protein dynamics and nuclear spin relaxation. J. 

Chem. Phys. 1995;102:3396–340

Collective motions are functional

Information entropy associated 

with residue fluctuations in 

mode k
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1

N

i il

ANM mode 1 (u1)

Mode 2

Mode 20

~λ1

~λ2

~λ20

En
er

gy

Displacement

low-frequency

~ global modes

l1 < λ2 < λ3< …

Doruker et al. (2000) Proteins;  Atilgan AR et al. (2001) Biophys J.; Eyal et al. (2006) Bioinformatics 22, 2619

higher-frequency

Anisotropic Network Model (ANM)



3N x 3N Hessian of ANM replaces the NxN Kirchhoff
matrix of GNM – to yield mode shapes in 3N-d space



5/30/2017

ANM covariance matrix (3Nx3N)

C11 C21 C13 C1N

C12 C22

CN1 CNN

C3N =

<DX1DX2> DX1DY2>  DX1DZ2>

 DY1DX2>  DY1DY2>  DY1DZ2>

 DZ1DX2>  DZ1DY2>  DZ1DZ2>

3N x 3N



ANM server
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http://anm.csb.pitt.edu/cgi-bin/anm2/anm2.cgi



Output from ANM server
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1cot

http://enm.pitt.edu/oGNM_CC_map.php?gnm_id=0529539530&viewer=jsmol
http://anm.csb.pitt.edu/cgi-bin/anm2.1/anm_solver.cgi


Softest modes are functional

open

closed

tense (T) relaxed (R)

Experiments Theory

T R transition of Hb
intrinsically favored by global 
dynamics Xu, Tobi &  Bahar
(2003) J. Mol.  Biol. 333, 153;

E coli adenylate kinase 
dynamics: comparison of elastic 
network model modes with 15N-
NMR relaxation data. Temiz 
NA, Meirovitch E, Bahar I.
(2004)  Proteins 57, 468. 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=ShowDetailView&TermToSearch=15382240&ordinalpos=30&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum


Li et al (2017) Nucleic Acids Research (e-pub on May 3).

enm.pitt.edu      



• sensors and effectors

• first passage times for signaling

• mechanically functional sites

• effect of oligomerization

• coupling to membrane

New features sensors effectors

Perturbation response map

Dynamics of Structural 

Proteomics and Beyond

Li et al (2017) Nucleic Acids Research (e-pub on May 3).



Plan
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1. Theory
a. Gaussian Network Model (GNM)
b. Anisotropic Network Model (ANM)
c. Resources/Servers/Databases (ProDy, DynOmics etc)

2. Allosteric Changes in Structure

3. Ensemble analysis. Experiments vs Predictions 
Adaptability/evolution

4. Recent Extensions and Applications
a. Membrane Proteins 
b. AMPA Receptors
c. Chromatin



Allosteric changes in conformation 

Comparison with experimental data shows that the 

functional movements are those predicted by the 

ANM to be intrinsically encoded by the structure

Elastic Network Models are particularly 

useful for exploring the cooperative 

motions of large multimeric structures



Proteins exploit pre-existing soft 
modes for their interactions

Dror Tobi & I. Bahar (2005) PNAS 102:18908-18913 

Structural changes involved in protein binding 

correlate with intrinsic motions in the unbound state

maltodextrin binding protein

Unbound/Bound



Substates may be identified along soft modes

S1

S2S3 P1
P2

p1p2

P1

Hybrid ANM/MD methods include atomic details and specificity



Passage between the R and T states
tr
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R”

R

Z Yang, P Marek and I Bahar, PLoS Comp Biology 2009
See...

(c)

(d)

(f)

Allosteric dynamics of GroEL



T

Z Yang, P Marek and I Bahar, PLoS Comp Biology 2009
See...

(c)

(d)

(f)

d = [Dx1 Dy1 Dz1 …     DzN]T

What is the overlap between computations 
and experiments?

ANM yields a series of 3N 

dimensional deformation vectors

Mode 1 (slowest mode)

Mode 2 

Mode 3

….

Mode 3N-6 (fastest mode)

Given by eigenvectors u1, u2, u3,

….u3N-6, with respective frequencies of 

l1, l2, l3,…. l3N-6

ExperimentsComputations
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Z Yang, P Marek and I Bahar, PLoS Comp Biology 2009
See...
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What is the overlap between computations 

and experiments?

Correlation cosine between uk and d

Mode index, k
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Z Yang, P Marek and I Bahar, PLoS Comp Biology 2009
See...
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d = [Dx1 Dy1 Dz1 …     DzN]T

The softest mode enables the passage R T

(with a correlation of 0.81)

Mode index, k



E461K mutation causes disruption of inter-ring transfer of 
ATP-induced signal (Sewell et al NSB 2004)

E461 mutant is a deformed structure along mode 1

Yang et al. Mol Biosyst 2008

Mutations may stabilize conformers along soft modes 
– which may be impair function



Plan
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1. Theory
a. Gaussian Network Model (GNM)
b. Anisotropic Network Model (ANM)
c. Resources/Servers/Databases (ProDy, DynOmics etc)

2. Allosteric Changes in Structure

3. Ensemble analysis. Experiments vs Predictions 
Adaptability/evolution

4. Recent Extensions and Applications
a. Membrane Proteins 
b. AMPA Receptors
c. Chromatin



A better comparison:

Consider more than 2 end points for a given 
structure, but all the known structures for a 
given protein, or the structurally resolved 

Ensemble of structures
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Dynamics inferred from known structures

Bahar et al. J. Mol. Biol. 285, 1023, 1999.

Different structures resolved for HIV-1 reverse transcriptase (RT)

Comparison of static structures available in the PDB for the same protein in 
different form has been widely used is an indirect method of inferring 
dynamics. 



Ensembles of structures 

Structural changes accompanying 

substrate (protein) binding

Structural changes induced by, or 

stabilized upon, ligand binding
Ubiquitin

140 structures

1732 models
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(182 structures)
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What is the overlap between computations 

and experiments?

Correlation cosine between uk and d

Mode index, k
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The softest mode enables the passage R T

(with a correlation of 0.81)

Mode index, k



Global motions inferred from 

theory and experiments

 PCA of the ensemble of resolved structures

ANM analysis of a single structure from the ensemble



Reference:

Bakan & Bahar (2009) PNAS 106, 14349-54

Global motions inferred from 

theory and experiments



What is Ensemble Analysis?

Input:
An ensemble of structures 

for a given protein
NMR models (~40)

X-ray structures resolved 
under different conditions 
(ligand-bound/unbound, 
different stages of molecular 
machinery or transport cycle

MD snapshots/frames

Output:
Principal modes of 

conformational

variations/differences 
between NMR models

rearrangements/changes 
under different functional 
states

dynamics/fluctuations 
observed in simulations
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Principal component analysis



What is Ensemble Analysis?
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Principal component analysis
 Method:
 Superimpose of the 

structures

 Evaluate the covariance 
matrix (differences between 
individual coordinates and 
mean coordinates)

 Decompose it into a series of 
modes of covariance (3N-6 
eigenvectors)

Output:
Principal modes of 

conformational

variations/differences 
between NMR models

rearrangements/changes 
under different functional 
states

dynamics/fluctuations 
observed in simulations



Covariance matrix (NxN)

DR1 . DR1> DR1 . DR2> ... ... DR1 . DRN>

DR2. DR1> DR2. DR2>

...

...

DRN . DR1> DRN. DRN>

C =

DR = N-dim vector of instantaneous fluctuations DRi for all residues (1 ≤ i ≤ N) 

< DR1 . DR1> = ms fluctuation of site 1 averaged over all m snapshots.

= DR DRT



5/30/2017

Covariance matrix (3Nx3N)

C11 C21 C13 C1N

C12 C22

CN1 CNN

C3N =

<DX1DX2> DX1DY2>  DX1DZ2>

 DY1DX2>  DY1DY2>  DY1DZ2>

 DZ1DX2>  DZ1DY2>  DZ1DZ2>

3N x 3N



Principal Component Analysis (PCA)
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Bakan & Bahar (2009) PNAS 106, 14349-54.

References:
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Soft modes enable functional movements
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Experimental structures (for a given protein) are 
mainly variants along soft modes

Meireles L, Gur M, Bakan A, Bahar I (2011) Pre-existing soft modes of motion uniquely defined by native contact topology 
facilitate ligand binding to proteins Protein Science 20: 1645-58.

Pre-existing paths

http://www.ncbi.nlm.nih.gov/pubmed/21826755
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ENVIGLLDVFT......

User inputs a protein sequence

identifies, retrieves, aligns, 

and analyzes (PCA) structures that 
match the input sequence

Overlap table
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User can compare 

experimental and 
theoretical models

p38 network model

(ANM)

p38 ensemble

(PCA)

Experiment/Theory

500,000+ downloads

Source http://www.google.com/analytics/

for exploring conformational space

User can sample an ensemble 

of conformations along ANM 

modes for docking simulations

ANM

Bakan & Bahar, PSB  2011, 181-192

MD
ProDy-ANM sampling of 

conformational space is more 

complete than that of MD



Major advantages of ProDy:
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Simplicity 

Visualizing the global dynamics

Applicability to large systems

Assessing cooperative motions

Efficiency – immediate results

Relevance to observables, to 
functional mechanisms & allostery



Disadvantages
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Low resolution approach

No specific interactions

Lack of atomic details

Linear theory – applicable near 

energy minimum

Requires structural data – not a 

tool for structure prediction



Co-MD: Guiding MD simulations 
by ANM modes
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ANM-guided transition pathways

Isin B, Schulten K, Tajkhorshid E, Bahar I 
(2008) Biophysical J 95: 789-803.

Yang Z, Májek P, Bahar I (2009) PLoS

Comput Biol 5: e1000360.

Gur M, Madura JD, Bahar I (2013) 
Biophys J 105:1643-52

Das A, Gur M, Cheng MH, Jo S, Bahar I, 

Roux B (2014) PLoS Comput Biol 10: 
e1003521

coMD trajectories proceed along the minima of free energy landscape

Dr. Mert Gur



Session I: Plotting <(DRi)
2> and 

contributions of selected modes
 from prody import *

 from pylab import *

 anm = calcANM('1cot', selstr='calpha')

 anm, cot = calcANM('1cot', selstr='calpha')

 anm

 cot

 figure()

 showProtein(cot)

 figure()

 showSqFlucts(anm)

 figure()

 showSqFlucts(anm[:10])



 figure()

 showSqFlucts(anm[:10], label='10 modes')
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Application to cytochrome c

PDB: 1cot

A protein of 121 residues

cmd

ipython



Session 2:  Viewing color-coded 

animations of individual modes

 writeNMD('cot_anm.nmd', anm, cot)

 Start VMD
 select Extensions  Analysis Normal 

Mode Wizard

 Select ‘Load NMD File’
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Session 3: Cross-correlations 

<(DRi .DRj)> between fluctuations

 cross_corr = calcCrossCorr?

 cross_corr = calcCrossCorr(anm[0])

 figure()

 showCrossCorr(anm[0])



Session 4: 

Viewing cross-correlations using VMD

 writeHeatmap('anm_cross1.hm', cross_corr)

 VMD – Load file

 Select cot_anm.nmd (from your local folder)

 Load HeatMap

 open anm_cross1.hm (from your local folder)
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