

Daniel M. Zuckerman Department of Computational & Systems Biology University of Pittsburgh School of Medicine

Tetra-alanine

• For a "tetra-alanine" (four peptide planes) ...

We stress that although the path which we described in detail was special (the lowest energy pathway between the α helix and the extended chain) there are many more reaction coordinates between the helix and the extended chain. There are ≈ 1000 additional paths with barriers only ≈ 1 kcal/mol higher than the lowest energy path. These paths cannot be ignored (of course) in a quantitative calculation of the transitions.

[Czerminksi & Elber, J Chem Phys, 1990]

Limitations of WE			
Fundamental limitations:			
 Orthogonal coordinates (which are uncorrelated with binned coordinates) must be sampled by "brute force" [Note: also true for other methods] 			
 Correlations result from splitting/merging [Note: other methods also yield path correlations] 			
 Not every observable can be sampled more efficiently – primarily slow coordinates improved 			
Not required in WE:			
 Advance knowledge of slow coordinates 			
– Static bins			
– Uniform bins			
– Bins themselves			

How efficient is WE sampling of these slow associations?

	WE	Brute force
Number of association events	>1000	
Number of CPU cores	512	
Wall-clock time	3 days	386 days (!)
 WE is >100x more eff simulation in generati 	ficient than brut ng association	e force events

How efficient is WE in sampling protein binding with atomistic detail?

	Barnase-barstar
Aggregate simulation time for WE	3 µs
Aggregate simulation time for brute force	300 µs
Efficiency of WE vs. brute force	100x

WE is a "meta method"

- · Key: WE checks trajectories at fixed time intervals
- · No software-specific parallelization required
- Scripting-level: Requires only ability to start, stop, and re-start simulations
 - Competing methods require difficult modifications to source code
- Implemented with AMBER, GROMACS, NAMD
 - Easy to add new package
- Generality for other contexts
 - Example: Systems biology
- WESTPA software (LT Chong)
 - Scales to thousands of cores

