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Molecular sampling is difficult!
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A Whole-Cell Computational Model
Predicts Phenotype from Genotype

Cell-scale models may
be highly complex
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[Shaw & coworkers, Science 2011]

« Can measure folding times (rates), populations
— Note: elevated temperature, small system

— RMSD = root-mean-squared deviation = effective
distance from folded structure

* Problem: Most CPU time not spent on transitions

350
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Molecular Model Resolution
Coarse-grainedAtomistic Quantum

MD sampling limitations

Good sampling
not possible

Peptide Small protein Large protein Protein complex
System size

To improve on MD, we must
understand trajectories

rN(t-At)
rN(t)

N ={ (X4, Y1, Z41)s (X2 Y21 Za), - (Xns Yns Zn) }

6/6/2016



Representing diffusion with an
ensemble of trajectories
(Motion in real space)
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Trajectory ensembles of independent systems
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Equilibrium ensemble

[See DM Zuckerman, Statistical Physics of Biomolecules, Ch 11]

Three key trajectory ensembles

[See DM Zuckerman, Statistical Physics of Biomolecules, Ch 11]
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(independent systems)

Pa = Na/N

VN

Equilibrium a

Ensemble &
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A large number of independent systems undergoing natural dynamics - constant conditions

Trajectory ensemble in two dimensions

The most important picture in non-equilibrium
statistical mechanics?
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[Divide equil into SS: Bhatt & Zuckerman, J Chem Theory Comp 2011
cf. Vanden Eijnden & Venturoli, JCP 2009; Dinner & co, JCP 2009; Bolhuis & co, JCP 2003]
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The path ensemble is the mechanism

P

J{\, A—B Steag\>

Macroscopic vs. microscopic reversibility
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[Divide equil into SS: Bhatt & Zuckerman, J Chem Theory Comp 2011
cf. Vanden Eijnden & Venturoli, JCP 2009; Dinner & co, JCP 2009; Bolhuis & co, JCP 2003]
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Unbiased estimation of long timescales (slow rates):
The Hill relation yields exact MFPT from steady state

A)
1

kug = m = Prob. flux into B
/\J

* MFPT = mean first-passage time
» FPT = time until arrival in B, starting from A
d * Prob. Flux = fraction arriving / sec
A—) » Enables estimates of long timescales
_\5 from short simulations

In steady state (trajectories arriving B placed at

@5

Q;

The Hill relation - by counting

Narrive (At) At

Ntot ~ MFPT(A - B)
AN

d?:\" A—B Steady /® A

\ In steady state (trajectories arriving B placed at A)

1 kup = m Prob. flux into B
- ( 5\/@
g B

Q;

[TL Hill, Free Energy Transduction and Biochemical Cycle Kinetics]
See also StatisticalBiophysicsBlog.org
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Markovian behavior — beware of

assumptions!
Markovian < Distribution of future outcomes depends only on

present.
Everything is Markovian: In molecular physics, current positions

and velocities of all atoms fully determine future distribution of
possible outcomes.

Nothing is Markovian: Once a Markovian system is discretized

(or projected onto a subset of coordinates), behavior in the
reduced space is no longer Markovian

- Exi | nsion
j A discrete index is blind to
T / 3 whether the underlying
e —— A e continuous trajectory is near the
r_,-\“/ Z: upper or lower boundary.
1»-\.,1 / « Example: 3 — 4 transition,

after coming from 2

=

StatisticalBiophysicsBlog.org

Random Driving: Non-Markovian in
state-space

Mustang201
6.com

Washingtan

Ovagan Minnsala

Alasia

Hawas
= e wikipedia
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o/P labeling: Minimal history for kinetics

Markovian/equilibrium rate

/
BB
O AL kijj= pikij +pi ki
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o=lastin A 1\5 i¢B,jEB
p=lastinB 2 ~ » Exact MFPT from steady-state
J ‘L ANY solution using kf;
>\ « ANY STATES
/ ) - ANY LAG TIME
€eq _ _«a B l * No Markov assumption
p, =p; tp; - ~

[Suarez, Lettieri, ... Zuckerman, JCTC, 2014]

Interim Summary

Essentials of trajectory physics

1.

Equilibrium ensemble
decomposed exactly into red
(A—B) and black (B—A) steady
states

Ensemble defines mechanism

MFPT calculated exactly from
probability flux in steady state (Hill
relation)

To analyze continuous trajectories
in a reduced/discrete space,
Markovian behavior cannot be
assumed.

i J,.B. &)

* The most important

picture in non-

equilibrium statistical

mechanics?

» Powerful lessons
from simple
principles
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Equilibrium ensemble — Path ensemble

N — Uk
p ( rJ ) X e Ulr }/A[; T
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whole molecule individual atoms
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i sequence of whole-system
= {l‘g. l"l\ l";V. L } configurations

pl’Ob (rlmj) X exp[_Elruj (l.lruj)/kBT]

[DM Zuckerman, Statistical Physics of Biomolecules, Ch 11]

Main dihedral of butane (deg.)

One more: The transition-path ensemble

Butane trans-to-gauche transitions
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1 1 1 L
0 2,000 4,000 6,000 8,000 10,000

6/6/2016

11



Tetra-alanine

» For a “tetra-alanine” (four peptide planes) ...

We stress that although the path which we described in
detail was special (the lowest energy pathway between the a
helix and the extended chain) there are many more reaction
coordinates between the helix and the extended chain. There
are = 1000 additional paths with barriers only = 1 kcal/mol
higher than the lowest energy path. These paths cannot be
ignored (of course) in a quantitative calculation of the tran-
sitions.

[Czerminksi & Elber, J Chem Phys, 1990]

Transition path ensemble: Intrinsic costs

* N,,q = number of independent paths desired
—Likely 10 < Nj,q <100
* 1, = typical time for event
— Does not include dwell time in initial state
— Could include intermediate dwells, depending on
context
* Nijq t, = minimum computation cost

— Minimum obtained when no correlated paths
generated, and all paths are properly distributed
(apparently impossible)

6/6/2016
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Transition Path Sampling: Monte
Carlo in Path Space

P> ol

Developers:

* Pratt

* Chandler

* Bolhuis, van Erp

Basic Idea

« Trial trajectory generated from previous trajectory in ensemble

» Accept/reject via Metropolis criterion

Comments

» Connection to quantum path-integral methods

» Chance of trapping (like all Metropolis MC)

« Difficult to calculate rates — spurred improved variations

+ Metastable intermediates lead to long trajectories — requires special treatment

Dynamic Importance Sampling:

Developers:
* Woolf
» Zuckerman

Basic Idea

* Generate (biased) ensemble of trajectories

» Reweight using ratio of sampled to true probability

Comments

» Easily captures path diversity

« Difficult to have overlap between sampled and true ensembile (like all
reweighting in high dimensions)

6/6/2016
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Milestoning, Forward-flux Sampling:
Path sampling between interfaces

LY
\\ Developers:
A\
\  * Elber
\ * ten Wolde, Allen

Basic ldea

» Set up interfaces interpolating between initial and final states

» Collect statistics on short trajectories initiated at interfaces

Comments

» Rigorous formulations possible; sometimes Markov assumption used

» Must “catch” trajectories as they cross boundaries

» Related to Transition Interface Sampling [Bolhuis, van Erp] and Non-
equilibrium Umbrella Sampling [Dinner]

Markov State Modeling: A variation
on interface methods

Developers:
« Bahar, Dill
* Pande

* Noe

Basic Idea

» Collect trajectories distributed in configuration space, possibly brief

+ Decompose space and estimate transition probabilities, long timescales
Comments

+ Literature reports use significant trajectory data for nearly Markovian behavior
» Non-trivial to generate optimal division of space

6/6/2016
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Weighted Ensemble: Resampling in
Path Space

“\  Developers:

\\ * Huber & Kim
oo Zuckerman, Chong
/|« Darve/lzaguirre

/

/] Brooks

Basic Idea

+ Initiate set of short trajectories

* Replicate (resample) trajectories which make transitions; repeat

Comments

» Rigorous — unbiased estimation of observables

* No need to “catch” trajectories as they cross interfaces — easily use packages
» Can calculate equilibrium and non-equilibrium quantities

String methods: Local optimization
(not sampling)

+ Finite-temperature string: optimization from initial path
— Manually specify initial path(s)

+ Builds on prior action-optimization methods
— [Olender & Elber, JCP 1996]

180 . = w0

(]

]

Alanine dipeptide in vacuum ... and explicit solvent [vanden Eijnden, JCP 2005]
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Weighted Ensemble — original algorithm

=

Time Propagation: Arbitrary Dynamics Engine

U(x)
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< Splitting/Merging: Weighted Ensemble ]

Probability:

1

[Original Weighted Ensemble: Huber & Kim, Biophys J. 1996;
Figure from Donvan et al., J Chem Phys 2013]

WE is based on resampling

Number of samples

Each original
sample member
has a relative
weight of 1

Value (x)

[See Zhang, Jasnow, Zuckerman, J. Chem. Phys. 2010]
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Resampling
| ' Resample to
! i double amount of
» | | right-most
2| : .: elements — now
€ : ' with weights 1/2
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[See Zhang, Jasnow, Zuckerman, J. Chem. Phys. 2010]
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[See Zhang, Jasnow, Zuckerman, J. Chem. Phys. 2010]
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WE is resampling, in trajectory space

» Trajectories are objects in high dimensional space with well-
defined distribution ([see Zuckerman, Statistical Physics of
Biomolecules: An Introduction)

9 = {x(t = 0), x(t = 60, 2(t = 26¢), ..)

WE starts from a correct path ensemble (multiple ordinary simulations)

All paths continuous & dynamical throughout

Occasional resampling in path space using splitting and combining

Probabilistic resampling: no assumption of equilibrium in bins

Correct for non-Markovian dynamics because history is included in

resampling

[Path integral formulation in Zhang, Jasnow, Zuckerman, J. Chem. Phys. 2010]

1

SplitT

1 Dynamics

: : ! i ! i
binl i bin2 i bin3 binl | bin2 ! bin3 binl : bin2 | bin3
1 T T -

Progress Coordinate  x Progress Coordinate  x Progress Coordinate X

Limitations of WE

* Fundamental limitations:

1. Orthogonal coordinates (which are uncorrelated with
binned coordinates) must be sampled by “brute force”
[Note: also true for other methods]

2. Correlations result from splitting/merging [Note: other
methods also yield path correlations]

3. Not every observable can be sampled more efficiently —
primarily slow coordinates improved
* Not required in WE:
— Advance knowledge of slow coordinates
— Static bins
— Uniform bins
— Bins themselves

6/6/2016
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Automated Voronoi binning
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[Zhang, Jasnow, Zuckerman, JCP 2010]
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Validation of original WE

Original WE algorithm [Huber and Kim]

* To check, we developed a verifiable system:
dual-basin G6 model using alpha carbons

Time [MC Steps]

ZWVW' Mﬁ' M" M M; 5 Ny
il M Wl y WMI |

Il
6.3655e+08
Time [MC steps]

example brute-force trajectory, ~1 wk single CPU

[Zuckerman, J. Phys. Chem. B, 2004]
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WE is correct & can be very efficient

» Rates and trajectory ensembles
can be obtained much faster: 100

times
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Super-Parallelism

Schematic of time for estimating observables to targeted precision

Naive simulation: 1 processor
Runtime=t
Total processortime =t

time

Simple parallel

simulation: 4 proc. (e.g.)

Run time = t/4
Total processortime > t

S

“Super parallel”
simulation: 4 proc.

Run time < t/4

Total processortime < t

6/6/2016
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Semi-atomistic model: Adenylate kinase

25 1
onwcimeionosiy ©_Mechanism
20
ot}
<
515k
=
B
=
[ca]
e 10
o
g
=] sk e Trajectory 1
=) Closed A Other (erystal)
<> Open (ensemble) # Open (crystal)
0 © Closed (ensemble) [ ] Flnsed (cn’pl:\l)

5 10 15 20 25
BD-LID distance, A

Adenylate kinase via semi-atomistic double-Go model &

0

LMBC
» Brute force: 4 years for a single transition (one
processor)

*  Weighted ensemble: ~50 indep. transitions in 2 wks
(one processor)

[Bhatt & Zuckerman, J. Chem. Theory Comp., 2010]

Three key trajectory ensembles
’-‘{' J'm"/'itfijed, ‘ b= J'nh"id';Jed.

5 - Original WE algorithm [Hube{\/
? Kim] follows initialized ensemble

3 * PROBLEM: Slow relaxation to
equilibrium or steady state

Eguil-| | ﬁ Equit-

i
225 = p—
- f‘; * SOLUTION: Equilibrium and

steady state require enhancements

to original WE algorithm

Stealy Stafe Steady Stafe
o

’??2 5 =
3¢ & Y l

;}x*y
S —
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Extending WE to Equilibrium and Non-
equilibrium Steady-State

Steady State:

Z. Pikji = Z Pikij
j#i Jj#i

- K
E il: pi(eq) — Y
qu pjleq)  kij

-V
/

A Y
]

A 1 \ /,
d Welghted N i ‘ Low weights
A
7

~
High weights Ensemble |- 'y [Xarfom star
near start —/Q}\‘} ——l T\

Steady-state/Equil WE: Bhatt, Zhang & Zuckerman, J Chem Phys 2010

Steady-state WE for a symporter

5 0
=
L -5f
T 10}
— A 24
L
< -15F < |
o @ 20f
o 0 | g
O O 16}
= 25 — & —
0 400 &
_ E canonical
‘? ol path\_ ]
outward facing 2 “outer Gate Distance [;g\? #

* Mhp1 sodium/benzylhydantoin co-transport — C-alpha model
[Adelman et al, Biophys J, 2011]
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Association in Explicit Solvent (Steady State)

» Parallelized

 Efficient in terms of overall computer use

Methane/Methane
(7.0)

f ‘iq."}_ﬁv rré-fl'
i S
AN T

L
T Sonle S
%

k4

LCod

Benzene/Methane
(8.7)

[Zwier, Kaus, Chong, J Chem Theory Comp, 2011]

K+ 18-crown-6 ethe
(300)

Non-Markov labeling for equilibrium and kinetics

&

7

o=lastin A
B =lastin B

pi = p; + Dj|

/\/)'\y /’f—\

AL
/\I /k\“_,! \\3 ~,
Weighted £

_~

N
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Labeled/Non-Markovian matrix

 Yields equilibrium and kinetic
quantities without bias (Markov
analysis yields biased kinetics)

+ Matrix used to solve steady state:
No Markov assumption

+ Analysis performed after
simulation: OK to change state

definitions

VIR U I B

0 0 : 0 0 i 0 0

?l 0 kgfz 0o b oo A'g;

B 0 0 B 0 s

kn "0 o3 T 23

113 1] 1] l% 0 [IJ,

A £

| f‘dl W b l"32 v ABS

[Suarez, Lettieri, ... Zuckerman, JCTC, 2014]

a/f Labeling

Trajectory Locations

150——— a1+

100

-150-100 -50 0 50 100 150
4

6/6/2016

24



Methane-Methane Association

Explicit solvent/united-
atom methane

Fast/easy system

Good sampling by both g )
— “brute force” (ordinary MD) :fﬂbﬁ}@ \!(E_

le MBS oy
~WE —— 0
Single WE simulation |

(original Huber-Kim) N |
— many different analyses = = ;

Repeated runs to show |
variation L L. o

hr[Ajh
[Zwier, Kaus, Chong, JCTC 2011]

Equil/non-eq observables - Efficiency

Both are Weighted Ensemble (WE) Effective

time for WE
~ 007 —~10
S 0.06 — Direct [Huber-Kim] 8
A ) : ? 09
2 0.05 —Non-Markovian Matrix g
< 004QMA] S e : T ] B e e ——— e T
-3

£ 003 t 2.,

002 = e Effective

0.6 :
0.01 Brute force (BF) fe—i time for BF >
0.00) 1 Efficiency: WE estimates obtained (same scale).

with less overall computing (including = Molecular Time(ns)
all trajectories) compared to standard
parallelization

[Suarez, Lettieri, ... Zuckerman, JCTC, 2014]
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One WE simulation: Variable state definitions

= = o
B &

b

MFPT B->A(ns)
e = o
- N

£ ¢S
N
8

MFPT A->B(ns)
s
B

=
=
(=

s
g i

Dissociation

6 8 10 12 14 16
Movable Boundary Position (A)

[Suarez, Lettieri, ... Zuckerman, JCTC, 2014]

MFPT A—B(ns)

Non-Markovian analysis corrects bias

0050 R 08

0.04

0.03

— Non-Markovian Matrix

0.02 — Markovian Matrix »
0.01 WE bins are not Markovian
» Color information is
000 g sufficient for rate calculation
Molecular Time(ns) Molecular Time(ns)
= 7 . o 0 E .:?’ 0 : 0 .?;
Ky Kiz Ky ] 0 i 1]_ L] E 0 o ’
e, e e
5 ( 0
& s P 21 22 ' 23
A 3 0 ] kd 0 A 3
o (S N 8 23
P L ! ”'j 0 H [1] l% ' 0 0-3
| & ] -;li.';“ 0 : 0 ;I{_Ili.z 0 k“”_

[Suarez, Lettieri, ... Zuckerman, JCTC, 2014]
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Flexible, coarse-grained models of
barnase and barstar

Retains molecular shapes,
electrostatic potentials, and diffusion
properties of all-atom models

Approximately one pseudo-
atom for every three residues
with flexible harmonic bonds

Electrostatic interactions
calculated using Debye-Huckel
equation

Non-electrostatic interactions
calculated using a very weak
Go-like potential

Frembgen-Kesner & Elcock, Biophys. J.

2010

Our simulation strategy

Carried out five separate
steady-state WE simulations

Each simulation was initiated
from 24 randomly oriented
unbound states

Applied the Northrup-Allison-
McCammon (NAM) framework
for recycling trajectories

BD simulations with
hydrodynamic interactions
using UIOWA-BD software

6/6/2016
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WE parameters

* Progress coordinate divided into three zones:
1) Far zone: Distance between the proteins

2) Intermediate zone: RMSD of barstar after alignment of
barnase from the native complex

3) Near zone: a) RMSD of barstar after alignment of barnase
from the native complex, and b) fraction of intermolecular
native contacts

» 760 bins, 24 walkers/bin, t = 2 ns, 100071 (2 us)

What is the computed ‘basal’ k,,?

10 -
=0 Significantly . _
® lower than | Il simulation
s° experiment | pm experiment
c
o]

complex with barstar

+ Suggests that electrostatic interactions are not completely
eliminated in experiments at high salt concentrations

Saglam & Chong, J. Phys. Chem. B 2016

6/6/2016
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How efficient is WE sampling of these
slow associations?

| WE__| Bruteforce_

Number of >1000
association events

Number of CPU cores 512

Wall-clock time 3 days 386 days (!)

+ WE is >100x more efficient than brute force
simulation in generating association events

IVIOVING ON 10 atomistic Simuiations
explicit solvent...

GROMACS software
All-atom AMBER ff99SB-
ILDN force field

TIP3P explicit water
molecules

To match experiment:
25°C, 1 atm, 50 mM NaCl

6/6/2016
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What is the estimated k_,,?

K, (108 M1s1)

Simulation Experiment
23+1.1 2.8*

*Schreiber & Fersht Nat Struct Biol
1996

How efficient is WE in sampling protein
binding with atomistic detail?

| |Bamase-barstar |
Aggregate simulation 3 us

time for WE

Aggregate simulation 300 ps

time for brute force

6/6/2016

30



WE is a “meta method”

Key: WE checks trajectories at fixed time intervals

No software-specific parallelization required
Scripting-level: Requires only ability to start, stop, and
re-start simulations

— Competing methods require difficult modifications to source
code

Implemented with AMBER, GROMACS, NAMD
— Easy to add new package

Generality for other contexts

— Example: Systems biology

WESTPA software (LT Chong)
— Scales to thousands of cores

Virus Capsid Assembly

THE JOURNAL OF CHEMICAL PHYSICS 143, 243159 (2015)
Tabulation as a high-resolution alternative to coarse-graining protein
interactions: Initial application to virus capsid subunits

Justin Spiriti and Daniel M. Zuckerman®

284 C-alpha model
(initial model)

Intial structure 80 dimers After 50 iterations 86 dimers. Alter 250 fleralans 103 diners
- T )
® % 4 Tabulation +
p ) o Weighted
g x;& o i‘, Ensemble
e, FEV 4 simulation

After 500 iterations 107 dimers Afver T50 iterations 112 dimers
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Systems biology: Cell-scale networks,

spatial models

Eon
rm%rm

From
CellOrganizer
software [R
Murphy]

[James Faeder, U. Pittsburgh]

Energy landscapes in (a8 )

Energy

systems biology 77y
'ﬂﬁ;\, ‘\

- Properly constructed kinetic  ————=
models (thermodynamically
consistent) are equivalent w ,3%
to free enerqy landscapes - 4,; ’}{;

s)?_(,
1l S
o
PR .
| Democratic” el

[Bar-Yam et al, Science, 2009]
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Similar challenges for biomolecules & systems

Cell Model Resolution
Simple nodes Rule-based Molecular

Good sampling
not possible

Single module Signaling network Whole cell/proteome

System size

Complexity is here Cat |
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WE can work in other spaces:
Species concentrations, Real space

| |

Initial state
5| @<
= .2 1
i 2 i i
c
§ <+ —H—a—ts
o I e
S > —»
‘E — —t
o
t
L]
]
o

Final Product Concentration

Species-concentration space

NE—
~0d
[5~

G

Real space

Immunological signaling via the high affinity
receptor for IgE (FceRI) — BioNetGen software

# Ligand-receptor hinding
R1:Rec(a) + Lig(L]) <> Rec(a'l).Lig(1'1,]) kpl, kml

a Components b Interactions

Ligand binding ~ Assaciation with receptar
W W IoE dimer and aggregation

?@f ] e e d g
g

# Lyn-receptor binding through SH2 domain
R6: Rec(b-pY) + Lyn(U,SH2) <-> Rec(b-pY!1).Lyn(U,SH2!1) kpLs, kmLs

# Transphosphorylation of beta by SH2-hound Lyn
R7: Lig(1!1,1'2) Lyn(U,SH2!3) Rec(a/2b-pY!3).Rec(allb-¥) -> \
Lig(1'11!2).Lyn(U,SH2!3).Rec(a'2,b-pY!3).Rec(a!l,b-pY) pLbs

# Transphosphorylation of gamma by SH2-bound Lyn
R8: Lig(1!1,'2) Lyn(U,SH2!3) Rec(al2,b-pY!3).Rec(allg-¥) -> \
Lig('.1'2) Lyn(U SE2!3) Rec(a!2,b-pY!3) Rec(all,g-pY) pLas

# Syk-receptor binding through tSH2 domain
R: Rec(g-pY) + SyK(tSH2) <> Rec(g-pY!1) Syk(tSH2!1) kpS, kmS

# Transphosphorylation of Syk by constitutive Lyn
RI10: Lig(I',1!2) Lyn(U!3,SH2) Rec(a!2,b-Y!3) Rec(all g-pY!4). SYK(tSH2!4,-Y) -> \

Transphosphorylation

Dephosphorylation

a—q Y

RI14: Rec(b-pY)-> Rec(b-Y) dm

# Dephosphorylation of Rec gamma
RI15: Rec(g~pY)-> Rec(g-Y) dm

# Dephosphorylation of Syk at membrane

R16: SyK(tSH2!+,1-pY)-> Syk(tSH2!+1-Y) dm
R17: Syk(tSH2!*,a-pY)-> Syk(tSH2!+,a-Y) dm

Dynamics =
Ordinary stochastic
chemical kinetics

# Dephosphorylation of Syk in cytosol
RI8: SyK(tSH2l-pY)-> Syk(tSH2,1-Y) dc
R19: Syk(tSH2,a-pY)-> Syk(tSH2,a-Y) dc
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Probability density

of a key species

—L_ = Precision limit
1,000
from 1,000 simulations

xxx?‘?-“'”‘”x%'(g
- *X2250

0.001 p —== =
2 106} SSA = Stochastic
= simulation (Gillespie)
E algorithm
[=] -9
g B WE-SSA

10712} i o

0 10 20 30 40

Population of RecSykPS at t = 60 secs

[Donovan, Sedgewick,

Faeder, Zuckerman, J. Chem. Phys. 2013]

Spatial dynamics via

* Implementation via
MCell (Monte Carlo

kinetic Monte Carlo

Cell) simulator,
controlled by
WESTPA

<
=1
1

1

e
= ¥
E 1/381 -
- “"
g 10 . N
~ "
10—60 -
Brute Force Distribution .
Weighted Ensemble  after 0.01s o
1040_ =
| | 1 I | 1 I
0 20 40 60 80 100

Bound Receptors on Opposing Surface

[Donovan et al.. PLoS Comp Bio, 20

161
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Biochemical reactions embedded in
realistic cellular geometry

From
CellOrganizer
software [R
Murphy]

From
BioNetGen
software [J
Faeder]

[Donovan et al.. PLoS Comp Bio, 20161

Reaction network & geometry — MCell

Chemical Kinetics

Enhanced Sampling

ME‘ST‘

Visual Editing

A
BioNetGen \
m MCelE: elk
Stochastic
Spatial
CellOrganizer Dynarmics

Images « Models

Model Geometries
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Probability

Cell/Compartment Signaling

-

Time = 100 secs {
10° - YioOM
CYRCe
1072 [ ¥ = 68 |
° \€% £/
1074 - °0 \“—’ 4
23e0 :
-0 = :
10 “e
BF ‘
(-2 * WE L
10° 10
T T 1 T T Y
0 5 10 15 20 25

Total Protein 1 [Donovan et al., PLoS Comp Bio, 2016]

Spatial modeling: Frog NMJ

Neuromuscular
Junction Model

Mcell
model .

[Donovan et al., PLoS Comp Bio, 2016]
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NMJ in MCell software

* MCell = Spatially resolved kinetic Monte Carlo
« NMJ model: Release of pre-synaptic vesicle triggered only
when sufficient calcium ions bind in threshold configuration
— [Dittrich et al., Biophysical J., 2013]

[Donovan et al., PLoS Comp Bio, 2016]

VVE dpplied 10 NeUTro-Imiusculidl JUrcuori

WE resolves rare events at
low calcium concentrations

model

‘nu- e—i
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First Passage Time (ms)

[Donovan, Tapia, Sullivan, Faeder, Murphy,
Dittrich, Zuckerman, PLoS Comp Bio, 2016]
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Conclusions

 Trajectory picture of equilibrium and non-
equilibrium statistical mechanics
— Simple, powerful
— Leads to efficient methods

« Weighted ensemble

— Unbiased estimations of observables, even
equilibrium and non-equilibrium quantities
(populations, rates) simultaneously

— Efficient: Can exhibit super-parallel behavior

— Practical: Parallel, “wrapper” code (Amber,
Gromacs, NAMD, BioNetGen, MCell ...)
http://chong.chem.pitt.edu/WESTPA

— Has limitations
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