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Physics of trajectories and the 
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Molecular sampling is difficult!

BPTI
[Shaw et al., Science 2010]
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Organism: human pathogen 
Mycoplasma genitalium
[Cell, 2012]

Cell-scale models may 
be highly complex

MD folding simulations (DE Shaw)

• Can measure folding times (rates), populations
– Note: elevated temperature, small system
– RMSD = root-mean-squared deviation = effective 

distance from folded structure

• Problem: Most CPU time not spent on transitions

[Shaw & coworkers, Science 2011]



6/6/2016

3

Peptide Large protein

C
oa

rs
e-

gr
ai

ne
d

Q
ua

nt
um

Good sampling 
not possible

System size

M
o

le
cu

la
r 

M
o

d
el

 R
es

o
lu

ti
o

n

Small protein Protein complex

A
to

m
is

tic

MD sampling limitations

To improve on MD, we must 
understand trajectories

( x(t), y(t) )
( x(t-t), y(t-t) )

( x(t-2t), y(t-2t) )

rN(t)

rN = { (x1, y1, z1), (x2, y2, z2), … (xN, yN, zN) }

rN(t-2t)

rN(t-t)
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Representing diffusion with an 
ensemble of trajectories
(Motion in real space)

Trajectory ensemble – activated process
(Configuration space)
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Trajectory ensembles of independent systems

Equilibrium ensemble

[See DM Zuckerman, Statistical Physics of Biomolecules, Ch 11]

Three key trajectory ensembles

[See DM Zuckerman, Statistical Physics of Biomolecules, Ch 11]
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A

B

Equilibrium
Ensemble

q1

q2

Trajectory ensemble in two dimensions 
(independent systems)

A large number of independent systems undergoing natural dynamics - constant conditions

஺݌ ൌ ஺ܰ/ܰ

A

B

q1

q2

Labeled
Equilibrium
Ensemble

The most important picture in non-equilibrium 
statistical mechanics?

[Divide equil into SS: Bhatt & Zuckerman, J Chem Theory Comp 2011
cf. Vanden Eijnden & Venturoli, JCP 2009; Dinner & co, JCP 2009; Bolhuis & co, JCP 2003]

Red = last in A
Black = last in B
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A

B

q1

q2

The path ensemble is the mechanism

A→B Steady 
State

A

A

B

q1

q2

Labeled
Equilibrium
Ensemble

Macroscopic vs. microscopic reversibility

[Divide equil into SS: Bhatt & Zuckerman, J Chem Theory Comp 2011
cf. Vanden Eijnden & Venturoli, JCP 2009; Dinner & co, JCP 2009; Bolhuis & co, JCP 2003]

Red = last in A
Black = last in B
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A

B

q1

q2

Unbiased estimation of long timescales (slow rates):
The Hill relation yields exact MFPT from steady state

A→B Steady 
State

A

In steady state (trajectories arriving B placed at 
A)

݇஺஻ ൌ
1

MFPT A	→	B
ൌ Prob.	flux	into	B

• MFPT = mean first-passage time
• FPT = time until arrival in B, starting from A
• Prob. Flux = fraction arriving / sec
• Enables estimates of long timescales 

from short simulations

B

q1

q2

The Hill relation - by counting

A→B Steady 
State

A Δt

See also StatisticalBiophysicsBlog.org

ܰarriveሺΔݐሻ
ܰtot

In steady state (trajectories arriving B placed at A)

݇஺஻ ൌ
1

MFPT A	→	B
ൌ Prob.	flux	into	B

In steady state (trajectories arriving B placed at A)

݇஺஻ ൌ
1

MFPT A	→	B
ൌ Prob.	flux	into	B

[TL Hill, Free Energy Transduction and Biochemical Cycle Kinetics]

ܰarriveሺΔݐሻ
ܰtot

ൌ
Δݐ

MFPTሺA → Bሻ
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Markovian behavior – beware of 
assumptions!

• Markovian  Distribution of future outcomes depends only on 
present.

• Everything is Markovian: In molecular physics, current positions 
and velocities of all atoms fully determine future distribution of 
possible outcomes.

• Nothing is Markovian: Once a Markovian system is discretized
(or projected onto a subset of coordinates), behavior in the 
reduced space is no longer Markovian

– Example: Diffusion in one dimension
A discrete index is blind to 
whether the underlying 
continuous trajectory is near the 
upper or lower boundary.
• Example: 3 → 4 transition, 

after coming from 2

StatisticalBiophysicsBlog.org

wikipedia

Random Driving: Non-Markovian in 
state-space

Mustang201
6.com mtfca.com
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α/β labeling: Minimal history for kinetics

α = last in A
β = last in B

[Suarez, Lettieri, … Zuckerman, JCTC, 2014]

௜݌
eq ൌ ௜݌

ఈ ൅ ௜݌
ఉ ݅ ݆

Markovian/equilibrium rate

݇௜௝ ൌ
௜݌
ఈ݇௜௝

ఈ ൅ ௜݌
ఉ݇௜௝

ఉ

௜݌
eq

• Exact MFPT from steady-state 
solution using ݇௜௝

ఈ

• ANY STATES
• ANY LAG TIME

• No Markov assumption

1
MFPT

ൌ ෍ ௜݌
ఈ݇௜௝

ఈ

௜∉஻,௝∈஻

Interim Summary

Essentials of trajectory physics
1. Equilibrium ensemble 

decomposed exactly into red 
(A→B) and black (B→A) steady 
states

2. Ensemble defines mechanism

3. MFPT calculated exactly from 
probability flux in steady state (Hill 
relation)

4. To analyze continuous trajectories 
in a reduced/discrete space, 
Markovian behavior cannot be 
assumed.

• The most important 
picture in non-
equilibrium statistical 
mechanics?
• Powerful lessons 

from simple 
principles
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Equilibrium ensemble → Path ensemble

[DM Zuckerman, Statistical Physics of Biomolecules, Ch 11]

whole molecule individual atoms

sequence of whole-system 
configurations

One more: The transition-path ensemble

• Butane trans-to-gauche transitions

[DM Zuckerman, Statistical Physics of Biomolecules, Ch 11]
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Tetra-alanine
• For a “tetra-alanine” (four peptide planes) …

[Czerminksi & Elber, J Chem Phys, 1990]

Transition path ensemble: Intrinsic costs

• Nind = number of independent paths desired
– Likely

• tb = typical time for event
– Does not include dwell time in initial state

– Could include intermediate dwells, depending on 
context

• Nind tb = minimum computation cost
– Minimum obtained when no correlated paths 

generated, and all paths are properly distributed 
(apparently impossible)
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Transition Path Sampling: Monte 
Carlo in Path Space

Developers:
• Pratt
• Chandler
• Bolhuis, van Erp

Basic Idea
• Trial trajectory generated from previous trajectory in ensemble
• Accept/reject via Metropolis criterion
Comments
• Connection to quantum path-integral methods
• Chance of trapping (like all Metropolis MC)
• Difficult to calculate rates – spurred improved variations
• Metastable intermediates lead to long trajectories – requires special treatment

Dynamic Importance Sampling:
Reweighting in path space

Developers:
• Woolf
• Zuckerman

Basic Idea
• Generate (biased) ensemble of trajectories
• Reweight using ratio of sampled to true probability
Comments
• Easily captures path diversity
• Difficult to have overlap between sampled and true ensemble (like all 

reweighting in high dimensions)
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Milestoning, Forward-flux Sampling:
Path sampling between interfaces

Developers:
• Elber
• ten Wolde, Allen

Basic Idea
• Set up interfaces interpolating between initial and final states
• Collect statistics on short trajectories initiated at interfaces
Comments
• Rigorous formulations possible; sometimes Markov assumption used
• Must “catch” trajectories as they cross boundaries
• Related to Transition Interface Sampling [Bolhuis, van Erp] and Non-

equilibrium Umbrella Sampling [Dinner]

Markov State Modeling: A variation 
on interface methods

Developers:
• Bahar, Dill
• Pande
• Noe

Basic Idea
• Collect trajectories distributed in configuration space, possibly brief
• Decompose space and estimate transition probabilities, long timescales
Comments
• Literature reports use significant trajectory data for nearly Markovian behavior
• Non-trivial to generate optimal division of space
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Weighted Ensemble: Resampling in 
Path Space

Developers:
• Huber & Kim
• Zuckerman, Chong
• Darve/Izaguirre
• Brooks

Basic Idea
• Initiate set of short trajectories
• Replicate (resample) trajectories which make transitions; repeat
Comments
• Rigorous – unbiased estimation of observables
• No need to “catch” trajectories as they cross interfaces – easily use packages
• Can calculate equilibrium and non-equilibrium quantities

String methods: Local optimization 
(not sampling)

• Finite-temperature string: optimization from initial path
– Manually specify initial path(s)

• Builds on prior action-optimization methods 
– [Olender & Elber, JCP 1996]

Alanine dipeptide in vacuum …  and explicit solvent [vanden Eijnden, JCP 2005]
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Weighted Ensemble – original algorithm

[Original Weighted Ensemble: Huber & Kim, Biophys J. 1996;
Figure from Donvan et al., J Chem Phys 2013]

WE is based on resampling

Value (x)
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Each original 
sample member 
has a relative 
weight of 1

[See Zhang, Jasnow, Zuckerman, J. Chem. Phys. 2010]
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Resampling

Value (x)
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Resample to 
double amount of 
right-most 
elements – now 
with weights 1/2

[See Zhang, Jasnow, Zuckerman, J. Chem. Phys. 2010]

Resampling

Value (x)

N
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Resample to 
halve amount 
of left-most 
elements –
now with 
weights 2

[See Zhang, Jasnow, Zuckerman, J. Chem. Phys. 2010]
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WE is resampling, in trajectory space
• Trajectories are objects in high dimensional space  with well-

defined distribution (see Zuckerman, Statistical Physics of 
Biomolecules: An Introduction)

– WE starts from a correct path ensemble (multiple ordinary simulations)
– All paths continuous & dynamical throughout
– Occasional resampling in path space using splitting and combining
– Probabilistic resampling: no assumption of equilibrium in bins
– Correct for non-Markovian dynamics because history is included in 

resampling
[Path integral formulation in Zhang, Jasnow, Zuckerman, J. Chem. Phys. 2010]

Limitations of WE
• Fundamental limitations: 

1. Orthogonal coordinates (which are uncorrelated with 
binned coordinates) must be sampled by “brute force” 
[Note: also true for other methods]

2. Correlations result from splitting/merging [Note: other 
methods also yield path correlations]

3. Not every observable can be sampled more efficiently –
primarily slow coordinates improved

• Not required in WE:
– Advance knowledge of slow coordinates

– Static bins

– Uniform bins

– Bins themselves
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Automated Voronoi binning

Adelman & Grabe, JCP 2013Adelman & Grabe, JCP 2013Adelman & Grabe, JCP 2013

[Zhang, Jasnow, Zuckerman, JCP 2010]

Validation of original WE
• Original WE algorithm [Huber and Kim]

• To check, we developed a verifiable system: 
dual-basin Gō model using alpha carbons

example brute-force trajectory, ~1 wk single CPU

[Zuckerman, J. Phys. Chem. B, 2004]
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WE is correct & can be very efficient
• Rates and trajectory ensembles 

can be obtained much faster: 100 
times or more
– Calculated by uncertainty in rate
– Excellent agreement with brute-

force results
– C-alpha model of calmodulin

[Zhang, Jasnow, & Zuckerman, 
PNAS, 2007]

Equal 
sim. 
time

Mechanism

Super-Parallelism
Schematic of time for estimating observables to targeted precision
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Semi-atomistic model: Adenylate kinase

Adenylate kinase via semi-atomistic double-Go model & 
LMBC
• Brute force: 4 years for a single transition (one 

processor)
• Weighted ensemble: ~50 indep. transitions in 2 wks

(one processor)

Mechanism

[Bhatt & Zuckerman, J. Chem. Theory Comp., 2010]

Three key trajectory ensembles

• Original WE algorithm [Huber & 
Kim] follows initialized ensemble

• PROBLEM: Slow relaxation to 
equilibrium or steady state

• SOLUTION: Equilibrium and 
steady state require enhancements 
to original WE algorithm
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A

B

Weighted
EnsembleHigh weights

near start

Low weights
far from start

A

B

Weighted
Ensemble

Extending WE to Equilibrium and Non-
equilibrium Steady-State

Steady-state/Equil WE: Bhatt, Zhang & Zuckerman, J Chem Phys 2010

kij

Equil: 
௣೔ሺ௘௤ሻ

௣ೕሺ௘௤ሻ
ൌ

௞ೕ೔
௞೔ೕ

Steady State: 
෍ ௝݌ ௝݇௜ ൌ	

௝ஷ௜
෍ 	௜݇௜௝݌

௝ஷ௜

Steady-state WE for a symporter

• Mhp1 sodium/benzylhydantoin co-transport – C-alpha model
[Adelman et al, Biophys J, 2011]
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Association in Explicit Solvent (Steady State)

• Parallelized
• Efficient in terms of overall computer use

Methane/Methane
(7.0)

Na+/Cl-
(1.4)

Benzene/Methane
(8.7)

K+ 18-crown-6 ether
(300)

[Zwier, Kaus, Chong, J Chem Theory Comp, 2011] 

Non-Markov labeling for equilibrium and kinetics

A

B

Weighted
Ensemble

A

B

Weighted
Ensemble

Steady-state/Equil WE: Bhatt, Zhang & Zuckerman, J Chem Phys 2010

α = last in A
β = last in B
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1 2 3 1 2 3

Labeled/Non-Markovian matrix
• Yields equilibrium and kinetic 

quantities without bias (Markov 
analysis yields biased kinetics)

• Matrix used to solve steady state: 
No Markov assumption

• Analysis performed after 
simulation: OK to change state 
definitions

[Suarez, Lettieri, … Zuckerman, JCTC, 2014]

α/β Labeling
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Methane-Methane Association
• Explicit solvent/united-

atom methane
• Fast/easy system
• Good sampling by both

– “brute force” (ordinary MD)
– WE

• Single WE simulation 
(original Huber-Kim) 
– many different analyses

• Repeated runs to show 
variation

[Zwier, Kaus, Chong, JCTC 2011]

(A
ss

o
c.

)

(D
is

so
c.

)

Dissociation

Brute force (BF)

Both are Weighted Ensemble (WE)

Association

[Suarez, Lettieri, … Zuckerman, JCTC, 2014]

Equil/non-eq observables - Efficiency
Effective 
time for WE

Effective 
time for BF 
(same scale)

[Huber-Kim]

Efficiency: WE estimates obtained 
with less overall computing (including 
all trajectories) compared to standard 
parallelization
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One WE simulation: Variable state definitions

WE
BF

Dissociation

Association

[Suarez, Lettieri, … Zuckerman, JCTC, 2014]

Non-Markovian analysis corrects bias

[Suarez, Lettieri, … Zuckerman, JCTC, 2014]

• WE bins are not Markovian
• Color information is 

sufficient for rate calculation
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Flexible, coarse-grained models of 
barnase and barstar

• Approximately one pseudo-
atom for every three residues 
with flexible harmonic bonds

• Electrostatic interactions 
calculated using Debye-Hückel
equation

• Non-electrostatic interactions 
calculated using a very weak 
Gō-like potential 

Frembgen-Kesner & Elcock, Biophys. J.
2010

Retains molecular shapes, 
electrostatic potentials, and diffusion 
properties of all-atom models

Our simulation strategy

• Carried out five separate 
steady-state WE simulations 

• Each simulation was initiated 
from 24 randomly oriented 
unbound states

• Applied the Northrup-Allison-
McCammon (NAM) framework 
for recycling trajectories

• BD simulations with 
hydrodynamic interactions 
using UIOWA-BD software

100 Å

500 Å
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WE parameters

• Progress coordinate divided into three zones:

1) Far zone: Distance between the proteins

2) Intermediate zone: RMSD of barstar after alignment of 
barnase from the native complex

3) Near zone: a) RMSD of barstar after alignment of barnase
from the native complex, and b) fraction of intermolecular 
native contacts 

• 760 bins, 24 walkers/bin, τ = 2 ns, 1000τ (2 μs)

What is the computed ‘basal’ kon?
10
9

10
6

10
8

10
7k o

n
(M

-1
s-

1 )

wild-type 
complex

hydrophobi
c isosteres

R59A barnase
with barstar

simulation

experiment

Significantly 
lower than 
experiment

Supports the use of simulations to directly obtain the 
basal kon under regular salt conditions

• Suggests that electrostatic interactions are not completely 
eliminated in experiments at high salt concentrations

Saglam & Chong, J. Phys. Chem. B 2016
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How efficient is WE sampling of these 
slow associations?

WE Brute force

Number of 
association events

>1000

Number of CPU cores 512

Wall-clock time 3 days 386 days (!)

• WE is >100x more efficient than brute force 
simulation in generating association events 

Moving on to atomistic simulations in 
explicit solvent…

• GROMACS software

• All-atom AMBER ff99SB-
ILDN force field

• TIP3P explicit water 
molecules

• To match experiment:       
25 oC, 1 atm, 50 mM NaCl
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What is the estimated kon?

kon (108 M-1s-1)

Simulation Experiment

2.3 ± 1.1 2.8*

*Schreiber & Fersht Nat Struct Biol
1996

121 independent binding pathways generated  
(5 days using 512 CPU cores on XSEDE’s Stampede)

How efficient is WE in sampling protein 
binding with atomistic detail?

Barnase-barstar

Aggregate simulation 
time for WE

3 μs

Aggregate simulation 
time for brute force 

300 μs

Efficiency of WE vs. 
brute force

100x
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WE is a “meta method”
• Key: WE checks trajectories at fixed time intervals

• No software-specific parallelization required

• Scripting-level: Requires only ability to start, stop, and 
re-start simulations
– Competing methods require difficult modifications to source 

code

• Implemented with AMBER, GROMACS, NAMD
– Easy to add new package

• Generality for other contexts
– Example: Systems biology

• WESTPA software (LT Chong)
– Scales to thousands of cores

Virus Capsid Assembly

Hepatitis B capsid
340 Å OD (incl spikes)
120 dimers per capsid

Each dimer  is 284 residues

284 C-alpha model
(initial model)

Tabulation +
Weighted 
Ensemble 
simulation
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Systems biology: Cell-scale networks, 
spatial models

[James Faeder, U. Pittsburgh]

From
CellOrganizer

software [R 
Murphy]

Energy landscapes in 
systems biology

• Properly constructed kinetic 
models (thermodynamically 
consistent) are equivalent 
to free energy landscapes

[Bar-Yam et al, Science, 2009]
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Similar challenges for biomolecules & systems

Single module
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Good sampling 
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System size
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Signaling network Whole cell/proteome

R
ul

e-
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se
d

Organism: human pathogen 
Mycoplasma genitalium
[Cell, 2012]

Complexity is here
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WE can work in other spaces:
Species concentrations, Real space

Species-concentration space

Real space

Immunological signaling via the high affinity 
receptor for IgE (FcεRI) – BioNetGen software

354 species, 3680 
reactions

Dynamics = 
Ordinary stochastic 
chemical kinetics
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Probability density of a key species

[Donovan, Sedgewick, Faeder, Zuckerman, J. Chem. Phys. 2013]

SSA = Stochastic 
simulation (Gillespie) 
algorithm

ଵ

ଵ,଴଴଴
= Precision limit 

from 1,000 simulations

Spatial dynamics via kinetic Monte Carlo

• Implementation via 
MCell (Monte Carlo 
Cell) simulator, 
controlled by 
WESTPA

Distribution 
after 0.01s

[Donovan et al., PLoS Comp Bio, 2016]
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Biochemical reactions embedded in 
realistic cellular geometry

From
CellOrganizer

software [R 
Murphy]

From
BioNetGen
software [J 
Faeder]

[Donovan et al., PLoS Comp Bio, 2016]

Reaction network & geometry → MCell
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Cell/Compartment Signaling

[Donovan et al., PLoS Comp Bio, 2016]

Spatial modeling: Frog NMJ

[Donovan et al., PLoS Comp Bio, 2016]

Mcell
model
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NMJ in MCell software
• MCell = Spatially resolved kinetic Monte Carlo

• NMJ model: Release of pre-synaptic vesicle triggered only 
when sufficient calcium ions bind in threshold configuration
– [Dittrich et al., Biophysical J., 2013]

[Donovan et al., PLoS Comp Bio, 2016]

WE applied to Neuro-muscular junction 
model

WE resolves rare events at 
low calcium concentrations

[Donovan, Tapia, Sullivan, Faeder, Murphy,
Dittrich, Zuckerman, PLoS Comp Bio, 2016]
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Conclusions
• Trajectory picture of equilibrium and non-

equilibrium statistical mechanics
– Simple, powerful
– Leads to efficient methods

• Weighted ensemble
– Unbiased estimations of observables, even 

equilibrium and non-equilibrium quantities 
(populations, rates) simultaneously

– Efficient: Can exhibit super-parallel behavior
– Practical: Parallel, “wrapper” code (Amber, 

Gromacs, NAMD, BioNetGen, MCell …) 
http://chong.chem.pitt.edu/WESTPA

– Has limitations


