The Molecular Dynamics Simulation Process

For textbooks see:

More at http://www.biomath.nyu.edu/index/course/99/textbooks.html

Classical Dynamics

at 300K

Energy function: \[U(\vec{r}_1, \vec{r}_2, \cdots, \vec{r}_N) = U(\vec{R}) \]

used to determine the force on each atom:

\[m_i \frac{d^2 \vec{r}_i}{dt^2} = \vec{F}_i = -\vec{\nabla} U(\vec{R}) \]

yields a set of 3N coupled 2nd-order differential equations that can be propagated forward (or backward) in time.

Initial coordinates obtained from crystal structure, velocities taken at random from Boltzmann distribution.

Maintain appropriate temperature by adjusting velocities.
Classical Dynamics

discretization in time for computing

\[m_i \frac{d^2 \vec{r}_i}{dt^2} = \vec{F}_i = -\nabla U(\vec{R}) \]

Use positions and accelerations at time \(t \) and the positions from time \(t-\delta t \) to calculate new positions at time \(t+\delta t \).

\[
\vec{r}(t + \delta t) \approx \vec{r}(t) + \vec{v}(t)\delta t + \frac{1}{2} \vec{a}(t)\delta t^2 + \frac{1}{2} \vec{a}(t)\delta t^2
\]

“Verlet algorithm”

\[
\vec{r}(t + \delta t) \approx 2\vec{r}(t) - \vec{r}(t - \delta t) + \vec{a}(t)\delta t^2
\]

Potential Energy Function of Biopolymer

- Simple, fixed algebraic form for every type of interaction.
- Variable parameters depend on types of atoms involved.

\[
U(\vec{R}) = \sum_{\text{bonds}} k_{i}^{\text{bond}} (r_i - r_0)^2 + \sum_{\text{angles}} k_{i}^{\text{angle}} (\theta_i - \theta_0)^2 + \sum_{\text{dihedrals}} k_{i}^{\text{dihedral}} \left[1 + \cos (n_i \phi_i + \delta_i) \right] + \sum_{i \neq j} 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \sum_{i \neq j} q_i q_j \epsilon r_{ij}
\]

heuristic from physics

from physics
Improving the Force Field

- Atomic polarizability increases computation by 2x…
- …but, the additional computations are perfectly suited to the GPU!
- For now, NAMD calculates atomic polarizability on CPUs only...soon we will also use GPUs

Molecular Dynamics Ensembles

Constant energy, constant number of particles (NE)

Constant energy, constant volume (NVE)

Constant temperature, constant volume (NVT)

Constant temperature, constant pressure (NPT)

Choose the ensemble that best fits your system and start the simulations, but use NE to check on accuracy of the simulation.
Langevin Dynamics

for temperature control

Langevin dynamics deals with each atom separately, balancing a small friction term with Gaussian noise to control temperature:

\[m \ddot{\mathbf{r}} = - \gamma m \dot{\mathbf{r}} + \dot{\mathbf{R}}(t) \]

\[\langle \dot{\mathbf{R}}(t) \cdot \dot{\mathbf{R}}(t') \rangle = 6k_B T \gamma \delta(t - t') \]

\[\frac{d^2 V(t)}{dt^2} = \frac{1}{W_{bs}} [P(t) - P_{\text{target}}] - \frac{1}{\tau_{bs}} \frac{dV(t)}{dt} + \dot{R}_{bs}(t) \]

\[P = \rho k_B T + \frac{1}{V} \sum_{i<j} \langle r_{ij} \frac{dU_{\text{tot}}(r_{ij})}{dr_{ij}} \rangle \]

\[\langle R_{bs}(t) R_{bs}(t') \rangle = \frac{2k_B T_{\text{target}} \delta(t - t')} {W_{bs} \tau_{bs}} \]

\[\dot{\mathbf{r}}_i = \mathbf{v}_i + s \mathbf{r}_i \quad \dot{\mathbf{v}}_i = \mathbf{F}_i / m_i - s \mathbf{v}_i \]

\[\dot{V} = d V S \quad \dot{s} = d V (P - P_{\text{target}}) / W - s / \tau_{bs} + R(t) \]

\[d \cdot \text{- dimension} \]
100-million Atom Simulation 2014

Simulated chromatophore with 101 protein complexes and 16,000 lipids

Simulation Speed [ns/day]

Tuning a NAMD Run on Blue Waters
Large is no problem. But …

Molecular dynamics simulation of alpha-hemolysin with about 300,000 atoms; 10 million atom simulations are routine today, 200 million atom simulations are possible.

But long is still a problem!

biomolecular timescale and timestep limits

<table>
<thead>
<tr>
<th>Event</th>
<th>Steps</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond stretching</td>
<td>fs</td>
<td>10^0</td>
</tr>
<tr>
<td>Elastic vibrations</td>
<td>ps</td>
<td>10^3</td>
</tr>
<tr>
<td>Rotation of surface sidechains</td>
<td>ns</td>
<td>10^6</td>
</tr>
<tr>
<td>(15 min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hinge bending</td>
<td>μs</td>
<td>10^9</td>
</tr>
<tr>
<td>(10 days, 2 hrs)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rotation of buried sidechains</td>
<td>ms</td>
<td>10^{12}</td>
</tr>
<tr>
<td>(30 years, 2 months)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>local denaturations</td>
<td>s</td>
<td>10^{15}</td>
</tr>
<tr>
<td>small protein folding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allosteric transitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation of surface sidechains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastic vibrations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond stretching</td>
<td></td>
<td></td>
</tr>
<tr>
<td>molecular dynamics timestep</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(NSF center, Shaw Res.)
Preparing Your System for MD Solvation

Biological activity is the result of interactions between molecules and occurs at the interfaces between molecules (protein-protein, protein-DNA, protein-solvent, DNA-solvent, etc).

Why model solvation?
• many biological processes occur in aqueous solution
• solvation effects play a crucial role in determining molecular conformation, electronic properties, binding energies, etc

How to model solvation?
• explicit treatment: solvent molecules are added to the molecular system
• implicit treatment: solvent is modeled as a continuum dielectric or so-called implicit force field

mitochondrial bc1 complex
Preparing Your System for MD Solvation

Biological activity is the result of interactions between molecules and occurs at the interfaces between molecules (protein-protein, protein-DNA, protein-solvent, DNA-solvent, etc).

Why model solvation?
• many biological processes occur in aqueous solution
• solvation effects play a crucial role in determining molecular conformation, electronic properties, binding energies, etc

How to model solvation?
• explicit treatment: solvent molecules are added to the molecular system
• implicit treatment: solvent is modeled as a continuum dielectric

(Usually periodic! Avoids surface effects)

From the Mountains to the Valleys

how to actually describe a protein

Initial coordinates have bad contacts, causing high energies and forces (due to averaging in observation, crystal packing, or due to difference between theoretical and actual forces)

Minimization finds a nearby local minimum.

Heating and cooling or equilibration at fixed temperature permits biopolymer to escape local minima with

Initial dynamics samples thermally accessible states.
From the Mountains to the Valleys
a molecular dynamics tale

Longer dynamics access other intermediate states; one may apply external forces to access other available states in a more timely manner.

Cutting Corners
cutoffs, PME, rigid bonds, and multiple timesteps

- Nonbonded interactions require order N^2 computer time!
 - Truncating at R_{cutoff} reduces this to order $N R_{\text{cutoff}}^3$
 - Particle mesh Ewald (PME) method adds long range electrostatics at order $N \log N$, only minor cost compared to cutoff calculation.

- Can we extend the timestep, and do this work fewer times?
 - Bonds to hydrogen atoms, which require a 1fs timestep, can be held at their equilibrium lengths, allowing 2fs steps.
 - Long range electrostatics forces vary slowly, and may be evaluated less often, such as on every second or third step.

- Coarse Graining
Residue-Based Coarse-Grained Model

- Lipid model: MARTINI
- Level of coarse-graining: ~4 heavy atoms per CG bead
- Interactions parameterized based on experimental data and thermodynamic properties of small molecules

Protein model uses two CG beads per residue
- One CG bead per side chain another for backbone

- All-atom peptide
- CG peptide

Nanodisc Assembly CG MD Simulation

- 10 µs simulation
- Assembly proceeds in two steps:
 - Aggregation of proteins and lipids driven by the hydrophobic effect
 - Optimization of the protein structure driven by increasingly specific protein-protein interactions
- Formation of the generally accepted double-belt model for discoidal HDL

Validation of Simulations

reverse coarse-graining and small-angle X-ray scattering

Reverse coarse-graining:
1. Map center of mass of the group of atoms represented by a single CG bead to that bead's location
2. MD minimization, simulated annealing with restraints, and equilibration to get all-atom structure

Small-angle X-ray scattering:
Calculated from reverse coarse-grained all-atom model and compared with experimental measurements

Shape-Based Coarse-Grained (CG) model

- Fully automatic
- Number of CG beads is chosen by a user (we used ~200 atoms per CG bead)

Example: MD Simulations of the K^+ Channel Protein

Ion channels are membrane-spanning proteins that form a pathway for the flux of inorganic ions across cell membranes.

Potassium channels are a particularly interesting class of ion channels, managing to distinguish with impressive fidelity between K^+ and Na^+ ions while maintaining a very high throughput of K^+ ions when gated.
Setting up the system (1)

- retrieve the PDB (coordinates) file from the Protein Data Bank
- add hydrogen atoms using PSFGEN
- use psf and parameter files to set up the structure; needs to be better than available in Charmm to describe well the ions, e.g., K/Na ion selectivity or Ca$^{2+}$ ion
- minimize the protein structure using NAMD2

Setting up the system (2)

Simulate the protein in its natural environment: solvated lipid bilayer
Setting up the system (3)

Inserting the protein in the lipid bilayer

Automatic insertion into the lipid bilayer leads to big gaps between the protein and the membrane — long equilibration time required to fill the gaps. Solution: manually adjust the position of lipids around the protein. Employ constant (lateral and normal) pressure control.

Kcsa channel protein (in blue) embedded in a (3:1) POPE/POPG lipid bilayer. Water molecules inside the channel are shown in vdw representation.
Simulating the system:
Free MD

Summary of simulations:
• protein/membrane system contains 38,112 atoms, including 5117 water molecules, 100 POPE and 34 POPG lipids, plus K^+ counterions
• CHARMM26 forcefield
• periodic boundary conditions, PME electrostatics
• 1 ns equilibration at 310K, NpT
• 2 ns dynamics, NpT

Program: NAMD2

Platform: Cray T3E (Pittsburgh Supercomputer Center) or local computer cluster; choose ~1000 atoms per processor.

MD Results

RMS deviations for the KcsA protein and its selectivity filter indicate that the protein is stable during the simulation with the selectivity filter the most stable part of the system.

Temperature factors for individual residues in the four monomers of the KcsA channel protein indicate that the most flexible parts of the protein are the N and C terminal ends, residues 52-60 and residues 84-90. Residues 74-80 in the selectivity filter have low temperature factors and are very stable during the simulation.
Simulation of Ion Conduction (here for Kv1.2)

Voltage-gated Potassium Ion Channel
Voltage-gated Potassium Ion Channel