
WESTPA Workshop 
Practicalities of WESTPA
ADAM PRATT

ALI SINAN SAGLAM



Overview

Part 1. WESTPA file format – HDF5

Part 2. Calculating free energy profiles

Part 3. Calculating rate constants

Part 4. Visualizing continuous trajectories



Required libraries/programs

• Python: https://www.python.org/
• Anaconda python distribution: 
https://store.continuum.io/cshop/anaconda/

• Numpy: http://www.numpy.org/

• Matplotlib: http://matplotlib.org/

• WESTPA: https://github.com/westpa/westpa



Overview

Part 1. WESTPA file format – HDF5

Part 2. Calculating free energy profiles

Part 3. Calculating rate constants

Part 4. Visualizing continuous trajectories



WESTPA File format

• HDF (Hierarchial Data Format) is a portable, open source 
file format that allows for
• Optimized large and complex data storage 

• Fast access for analysis

• Easy to use with Python thanks to h5py library



WESTPA File format

west.h5

bin_topologies

ibstates

iterations 

summary 

tstates



WESTPA File format

west.h5

bin_topologies – Contains binning information 

ibstates

iterations 

summary 

tstates



WESTPA File format

west.h5

bin_topologies – Contains binning information 

ibstates – Contains information about the starting structures

iterations 

summary 

tstates



WESTPA File format

west.h5

bin_topologies – Contains binning information 

ibstates – Contains information about the starting structures

iterations – Iteration data is stored here (more on this later) 

summary 

tstates



WESTPA File format

west.h5

bin_topologies – Contains binning information 

ibstates – Contains information about the starting structures

iterations – Iteration data is stored here (more on this later) 

summary – A summary of all iterations 

tstates



WESTPA File format

west.h5

bin_topologies – Contains binning information 

ibstates – Contains information about the starting structures

iterations – Iteration data is stored here (more on this later) 

summary – A summary of all iterations

tstates



WESTPA File format

west.h5

bin_topologies – Contains binning information 

ibstates – Contains information about the starting structures

iterations – Iteration data is stored here (more on this later) 

summary – A summary of all iterations 

tstates – Target state information (if it’s a steady state)



WESTPA File format

west.h5

bin_topologies – Contains binning information 

ibstates – Contains information about the starting structures

iterations – Iteration data is stored here (more on this later) 

summary – A summary of all iterations 

tstates – Target state information (if it’s a steady state)

Attributes/Meta data:

west_current_iteration – Keeps track of the current iteration (note 
that it doesn’t determine the current iteration!)



WESTPA File format

west.h5

iterations

iter_00000001

auxdata

ibstates

pcoord

seg_index

wtgraph



WESTPA File format

west.h5

iterations

iter_00000001

auxdata – Contains the auxiliary data collected

ibstates

pcoord

seg_index

wtgraph



WESTPA File format

west.h5

iterations

iter_00000001

auxdata – Contains the auxiliary data collected

ibstates – Contains information about starting states

pcoord

seg_index

wtgraph



WESTPA File format

west.h5

iterations

iter_00000001

auxdata – Contains the auxiliary data collected

ibstates – Contains information about starting states

pcoord – Contains progress coordinate data

seg_index

wtgraph



WESTPA File format

west.h5

iterations

iter_00000001

auxdata – Contains the auxiliary data collected

ibstates – Contains information about starting states

pcoord – Contains progress coordinate data

seg_index

wtgraph



WESTPA File format

west.h5

iterations

iter_00000001

auxdata – Contains the auxiliary data collected

ibstates – Contains information about starting states

pcoord – Contains progress coordinate data

seg_index – Contains parent information, probabilites and more

wtgraph



WESTPA File format

west.h5

iterations

iter_00000001

auxdata – Contains the auxiliary data collected

ibstates – Contains information about starting states

pcoord – Contains progress coordinate data

seg_index – Contains parent information, probabilites and more

wtgraph



WESTPA File format

west.h5

iterations

iter_00000001

auxdata – Contains the auxiliary data collected

ibstates – Contains information about starting states

pcoord – Contains progress coordinate data

seg_index – Contains parent information, probabilites and more

wtgraph – Contains connectivity information



Basic WESTPA tools

west.h5



Basic WESTPA tools

west.h5

pdist.h5

w_pdist



Basic WESTPA tools

west.h5

pdist.h5 assign.h5

w_assignw_pdist



Basic WESTPA tools

west.h5

pdist.

h5

assig

n.h5

w_pdist w_assign

Contains probability 

distributions



Basic WESTPA tools

west.h5

pdist.

h5

assig

n.h5

w_pdist w_assign

Contains assigned 

walkers

Contains probability 

distributions



Basic WESTPA tools

west.h5

pdist.

h5

assig

n.h5
w_pdist

w_assign



Basic WESTPA tools

west.h5

pdist.

h5

assig

n.h5

kinetics.h5

w_pdist

w_assign

w_kinetics



Basic WESTPA tools

west.h5

pdist.

h5

assig

n.h5

kinetics.h5

w_pdist

w_assign

w_kinetics

Contains fluxes 

from state to state



Basic WESTPA tools

west.h5

pdist.

h5

assig

n.h5

kineti

cs.h5

w_pdist

w_assign

w_kinetics



Basic WESTPA tools

west.h5

pdist.

h5

assig

n.h5

kineti

cs.h5

kinavg.h5

w_pdist

w_assign

w_kinetics

w_kinavg



Basic WESTPA tools

west.h5

pdist.

h5

assig

n.h5

kineti

cs.h5

kinavg.h5

w_pdist

w_assign

w_kinetics

w_kinavg

Contains averaged 

fluxes



Overview

Part 1. WESTPA file format – HDF5

Part 2. Calculating free energy profiles

Part 3. Calculating rate constants

Part 4. Visualizing continuous trajectories



Generating histograms

w_pdist
• -W WEST_H5FILE
• --first-iter, --last-iter
• -b [[dimension 1 bins], [dimension 2 bins],…]
• -o OUTPUT
• --construct-dataset CONSTRUCT_DATASET

• For a full list and documentation: w_pdist –h

• Useful for: 
• Further analysis of probabilities using the optional h5 output

• Plotting free energy profiles with either plothist or your own tool

w_pdist -W west.h5 --construct-dataset assignment.pull_data
-o pdist.h5 -b 200



Pulling arbitrary data sets

def pull_data(n_iter, iter_group):

auxdata = iter_group['auxdata']['end_to_end_dist'][...]
pcoord = iter_group['pcoord'][:,:,0]

data = numpy.dstack( (pcoord, auxdata) )

return data

• The function determines what is returned to be histogrammed for each iteration

• The shape should be (walker index, time index, data index)

• If the data is in another file the file has to be read (e.g a hdf5 file), if it’s saved under the 
iteration group then you can access the dataset from the iter_group object

• The data has to be stacked so that each point have the dimensionality you want e.g. if you 
want a 3D histogram each point has to be 3 dimensional



Plotting 1D free energy profiles

plothist [average|evolution|instantaneous]
• --range
• --hdf5-output
• --first-iter, --last-iter
• -o PLOT_OUTPUT
• --post-process-function 

•Useful for:
• Following the extent of sampling during a simulation

• Qualitatively helps refining binning schemes 

• Matplotlib hook allows for a lot of customization for quick plots, reports etc. 

• Matplotlib also allows for outputting into vector formats which can then be edited with a 
vector image editing software, suitable for publication quality plots

plothist average -o 1d_average.pdf --range 0,10 
--postprocess-function plotting.avg_1d pdist.h5 0



Changing plotting options

def avg_1d(hist, midpoints, binbounds):     
import matplotlib.pyplot as plt
plt.title(‘Free energy as a function of RMSD’)
plt.xlabel(‘Progress coordinate RMSD’)
plt.ylabel('Free energy surface (kT)')

• The function is called right after the plotting is completed by plothist. The pyplot
interface can then be used to further modify the plotted figure

• Note that the histograms, midpoints of the bins and the bin boundaries are passed to 
the function as arguments which can be used in the function e.g. plotting bin boundaries



Plotting free energy profiles – 1D



Free energy profile over time – 1D

plothist evolution -o 1d_evolution.pdf --range 0,10 
--postprocess-function plotting.evo_1d pdist.h5 0

• Useful for:
• Following how the sampling progresses over time, giving an idea as to 

how good the WE parameters are

• Gives a qualitative idea if the probability distribution is converged for a 
dimension



Free energy profile over time – 1D



Plotting 2D free energy profiles

plothist average -o 2d_average.pdf --range 0,10 
--postprocess-function plotting.avg_2d pdist.h5 0 1

• Useful for:
• Qualitatively looking at the correlation of data sets which in turn allows 

you to refine binning to include possibly orthogonal coordinates 

• Further refining state definitions using arbitrary data sets



Plotting 2D free energy profiles



Overview

Part 1. WESTPA file format – HDF5

Part 2. Calculating free energy surfaces

Part 3. Calculating rate constants

Part 4. Extracting continuous trajectories

k1

k-1



Rate constant calculations

• Calculation done in three steps

• Assignment of every data point into a bin for a given set of bins and states 
(w_assign)

• Calculating probability fluxes from states (w_kinetics)

• Averaging the fluxes and calculating per tau rate constants (w_kinavg)

• The datasets, states and the binning determined at the assignment stage

• Bins and states are constructed in YAML file format and passed to 
w_assign

• Useful for measuring the kinetics as well as qualitatively looking at 
convergence



Assignment of simulation data into bins

w_assign
• -W WEST_H5FILE
• --bins-from-file, --bins-from-system, --bins-from-expr
• --states-from-file, --states-from-function, --states
• -o OUTPUT
• --construct-dataset CONSTRUCT_DATASET

• Useful for:
• Implementing your own analyses that require assignment of simulation data into 

states

w_assign -W west.h5 --bins-from-file BINS --states-from-file STATES 
-o assign.h5 --construct-dataset assignment.pull_data



Bin boundaries

bins:
type: RectilinearBinMapper
boundaries: [[0.0, 2.0, 15.0, inf]]

•RectilinearBinMapper is the most common mapper but there are other ways to 
bin the data sets (see documentation for more information)

• This mapper basically forms a grid in both dimensions (or in other words a Cartesian 
product of the two sets of bins) e.g. [ [0.0, 1.0, inf], [0.0, 1.0, inf] ] has 2 bins in each 
axis (0 and 1 let’s say) and 4 bins total ( (0,0), (0,1), (1,0), (1,1) )

• Note that the boundaries has to be list of lists and this particular binning is just a 
1D binning with three bins



State definitions

states:
- label: bound
coords:

- [1.0]

- label: unbound
coords:

- [16.0]

• States are defined in a similar manner but they also require a label

• State boundaries are actually defined by bin boundaries and the coordinate for 
the state boundary has to be a value that falls into the bin that is going to be 
defined as a “state”

• This particular state definition says the bin (0.0, 1.0) is the bound state and the 
bin (15.0, inf) is the unbound state



States defined over arbitrary data sets

bins:
type: RectilinearBinMapper
boundaries: [[0.0, 0.2, 15.0, inf],[0.0, inf]]

states:
- label: bound_aux
coords:

- [1.0, 10.0]

- label: unbound_aux
coords:

- [16.0, 15.0]



Calculating rate constants

w_kinetics trace 
• -W west.h5 
• -a assign_aux.h5 
• -o kinetics_aux.h5

• Calculates probability fluxes from bin to bin as well as conditional fluxes from state to 
state

w_kinavg trace 
• -W west.h5 
• –a assign_aux.h5 
• -k kinetics_aux.h5 
• -o kinavg_aux.h5

• From the result of w_kinetics this tool calculates average fluxes, overall rate constants 
and conditional rate constants from state to state



Calculating rate constants

w_kinetics trace -W west.h5 -a assign_aux.h5 -o kinetics_aux.h5

w_kinavg trace -W west.h5 –a assign_aux.h5 
-k kinetics_aux.h5 -o kinavg_aux.h5

Sample output:

fluxes into macrostates:
bound  : mean=0.000e+00 CI=(0.000e+00, 0.000e+00) * tau^-1
unbound: mean=1.568e-04 CI=(8.290e-05, 2.570e-04) * tau^-1
fluxes from state to state:
bound   -> unbound: mean=1.568e-04 CI=(8.720e-05, 2.482e-04) * tau^-1
unbound -> bound  : mean=0.000e+00 CI=(0.000e+00, 0.000e+00) * tau^-1
rates from state to state:
bound   -> unbound: mean=1.576e-04 CI=(8.164e-05, 2.563e-04) * tau^-1
unbound -> bound  : mean=0.000e+00 CI=(0.000e+00, 0.000e+00) * tau^-1



Overview

Part 1. WESTPA file format – HDF5 

Part 2. Calculating free energy surfaces

Part 3. Calculating rate constants

Part 4. Visualizing continuous trajectories



Extracting trajectory history 

1. Iteration

2. Iteration

3. Iteration

4. Iteration

1

1 2

1 2 3

21



Extracting trajectory history 

1. Iteration

2. Iteration

3. Iteration

4. Iteration

1

1 2

1 2 3

21



Extracting trajectory history 

1. Iteration

2. Iteration

3. Iteration

4. Iteration

1

1 2

1 2 3

21



Extracting trajectory history 

1. Iteration

2. Iteration

3. Iteration

4. Iteration

1

1 2

1 2 3

21



Extracting trajectory history 

1. Iteration

2. Iteration

3. Iteration

4. Iteration

1

1 2

1 2 3

21



Extracting trajectory history 

1. Iteration

2. Iteration

3. Iteration

4. Iteration

1

1 2

1 2 3

21



Extracting trajectory history 

Tracing tool: w_trace

usage: w_trace [-h] [-r RCFILE] [--quiet | --verbose | --debug] [--version]
[-W WEST_H5FILE] [-d DSNAME] [--output-pattern OUTPUT_PATTERN]
[-o OUTPUT]
N_ITER:SEG_ID [N_ITER:SEG_ID ...]

w_trace -W west.h5 120:10



Extracting trajectory history 

# column  0: iteration (0 => initial state)
# column  1: seg_id (or initial state ID)
# column  2: weight
# column  3: wallclock time (s)
# column  4: CPU time (s)
# columns 5 -- 6: final progress coordinate value

0         0    0.00000000000000000e+00             0             0          1e-06                 0
1         2    2.50000000000000000e-01       311.479       309.314          0.361733                 0
2         0    2.50000000000000000e-01       308.769       307.023          0.442503                 0
3         4    2.50000000000000000e-01        333.15       331.626          0.558815                 0
4         5    2.50000000000000000e-01       380.693       379.153          0.556424                 0



Extracting trajectory files according 
to the history

• A sample bash script to pull files from the output of w_trace

./trj_trace.sh traj_120_10_trace.txt

• Note that this script also copies over the initial state coordinate file as well



for i in `tail -n +9 $1|awk '{print $1"-"$2}'`;do
# We need the iteration/walker indices as strings
# so we can name the file properly
iter=`echo $i|sed 's/-[0-9]*//'`
p_iter=`printf "%06d" $iter`
walk=`echo $i|sed 's/^[0-9]*//'|sed 's/-//'`
p_walk=`printf "%06d" $walk`

# Make the full path to the seg.xtc
TRJ_PATH=`printf "${TRAJ_SEGS}/%06d/%06d" $iter $walk`

# Copy into the folder!
cp $TRJ_PATH/seg.xtc ${FULL_TRJ}/${p_iter}_${p_walk}.xtc

done

Extracting trajectory files according 
to the history



Creating a movie the trajectory

• An example of stitching together .xtc files using the GROMACS trjcat tool into a 
continuous trajectory:

trjcat -f *xtc -o full_traj.xtc –cat

• Note that the .xtc files will be concatenated in order given to trjcat so they have to be 
named in order



The movie!


