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Druggable Genome
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Human Genome (21,000) genes

70%* kinases
100+ GPCRs

430+ kinases
600+ GPCRs

Hopkins and Groom, Nat Reviews Drug Disc, 2002



A few numbers...

®  Only 2% of human proteins interact with
currently approved drugs.

® 10-15% of human proteins are disease-modifying
® 10-15% are druggable

® 5% are both disease-modifying and druggable



Subcellular distribution of 1,362
druggable targets

among four
mammalian species.
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Ligand-Based Strategy
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Screening Cascade

Generate possibilities from
known lead compounds 100K-1M virtual molecules generated

structure-based/ligand-based

Select top 1% of compounds ~  Skiiibbbbb 1-10K best predictions
ADME/Tox filters applied
Best molecules chosen = ALALLRLLELEELERELEEL 100-1K compounds synthesi

Synthesis completed ----------------------- compounds assayed
In vitro experimental testing =~ ECRLELLRLELEEELELEIEILELELEL Data analysis

Iterative
Optimization

................ F1F2F3....

Use experimental data
to improve in silico and
experimental tools

In vivo testing



Rational Design of Inhibitors

3D structure of the target is used for

Visual inspection/molecular graphics

Docking (of both small molecules or fragments
thereof)

De novo methods

Receptor properly mapping + database searching




2 Druggable or not?

Active site druggability:

A
e . W > BestknownK,  18.3nM
- est K
| > Simulation 0.03-0.5nM

Lfa1 - a leukocyte glycoprotein that promotes intercellular
adhesion and binds intercellular adhesion molecule 1

Bakan & Bahar, J Chem Theory Comput. 8:2435-2447, 2012




) Druggability Simulations

Initial state Simulation trajectory
PRI Vs

binding site I0,000 frames

H \
Isopropanol Acetamide Acetate (-1) Isopropylamine (+1)
(observed in 57% of drugs) (21%) (21%) (25%)

Bakan & Bahar, J Chem Theory Comput. 8:2435-2447, 2012




Cytochrome c druggability

Bakan & Bahar, J Chem Theory Comput. 8:2435-2447, 2012




Methodology Overview

From MD simulations to achievable drug affinities
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Annealing, Equilibration, Simulation
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Annealing and equilibration
provide homogenous
distribution of solute
molecules on the protein
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NAMD?2 with CHARMM force field was used for simulations.



Free Energy of Binding for Isopropanol

Assuming that MD sampling converged to a Boltzmann ensemble
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N, = total number of isopropanols
total number of frames

0.5 A (not to scale)

N, corresponds to the central highlighted grid element;

number of cubes is introduced if multiple cubes are occupied by a single isopropanol




Isopropanol Binding Spots

AG grid is mapped onto the protein structure
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Selecting Isopropanol Binding Spots

. Grid element with lowest AG value is selected

2. Other elements within 4 A are removed

(elements inside the red sphere —>)

3. | and 2 are repeated until no more points
are left to remove
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Affinity of a Drug-size Molecule

A heuristic approach for calculating achievable free energy of binding

| *  Assuming binding of an isopropanol is independent
v | ofothers

» 7 spatially close binding spots are selected
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MDM2: p53 binding site

p53 peptide key interactions (X-ray)
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Predicted binding affinity range

Predicted max. affinity by Seco et al.

Numbers indicate the order that hot spots were merged by
the growing algorithm

:0.05-0.3 nM
:0.02 nM




MDM2: p53 binding site

An inhibitor that disrupts p53 binding
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Proteins may have multiple target sites

Active site Remote hot spot (for substrate binding)

(catalytic site)




egd Druggable Sites

{

Best K;0.2 nM
Prediction 0.3 nM
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Tubulin binding

Allosteric
site (0.3 nM)

Bioorg. Med. Chem. Lett. 2007, |7,5677-5682

site (0.3 nM)

Bakan & Bahar, J Chem Theory Comput. 8:2435-2447, 2%2



2 Assessment of druggable allosteric sites

MDM2 p53 site
Best K;0.6 nM

.
Prediction 0.3 nM @ /4

5. LFA-1 allosteric site
{2 BestICq, 0.35 nM

Prediction 0.03 nM

Biochemistry 2004, 43, 2394-2404
p38 MAPK active site | Q.

Best IC5, 0.05 nM
Prediction 0.01 nM

PTP1B catalytic site
Best IC5y 2.2 nM
Prediction 0.3 nM
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Bioorg. Med. Chem. Lett. 2003, 13, 3947-3950 J Med. Chem. 2010, 53, 2973-2985



Probe distributions are used for
building pharmacophore models

Pharmacophore Model: PM

Starting point: a series of hits

Method: clustering, identifying
commonalities, assigning weights

Used for screening
- approved drugs
-libraries of small compounds

To identify repurposable or new drugs
Zhang et al (2006) Bioorganic & Medicinal Chemistry Letters 16, 3009



72 Probes capture allosteric modulator site of
AMPAR LBD Dimer

Experimental Results

Pohlsgarrd et al (2011). 2 L
Neuropharmacology. 60, 1 35-150. O%' Ve
/4
/4
A

Computational modeling detects
experimentally observed binding site

Dutta, Greger, Bahar, manuscript in preparation.




2 Interfacial regions captured in AMPAR NTD

UL hotspots

Isobutane
A

I%ppropanol

LL hotspots

Dutta, Greger, Bahar, manuscript in preparation.
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3

Diversity & complexity of phenotypes arise from
combinations of proteins & modular domains

(o Highly integrated catalytic
and regulatory functions
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Active site
Input:
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effector
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Bhattacharyya et al. Annual Rev Biochem 2006



Significance of targeting a specific site, not
only a target protein

Recrultment
Interations

1. catalytic
interations
{enzyme-substrate)

2. scaffold (Steb)
recruitment
interactions
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3. MAPK
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8 Allostery Can Diversify Cellular Signaling Pathways
through a Single Receptor

GPCRs use conformational
selection to shape signaling.

Two (different) conformations
of GPCR bind two (different)
agonists, which branch into two
pathways

Arrestin-dependent G-protein-dependent
pathway pathway

Nussinov & Tsai (2013) “Allostery in Disease and Drug Discovery” Cell 153,293-305.



Protein Promiscuity

Many proteins are involved in multiple pathways.

Depending on the targeted surface region, or on
the accessible structural change/dynamics

the interactions with different (or multiple)
upstream or downstream partners/substrates may
be affected,

which in turn would impact different (or multiple)
pathways, and may result in various phenotypes



5 Assessment of druggable allosteric sites

ini Imatinib was developed for chronic myelogenous leukemia
Imatinib (Gleevec) P yelog

(CML), but was also used for gastrointestinal stromal tumors
(GISTs) and some other diseases.

THERE IS NEW AMMUNITION
IN THE WAR AGAINST

GANGER.

Bcr-Abl tyrosine kinase

THESE ARE THE BULLETS.

Revolutionary new pills like GLEEVEC WILD-TYPE T3151 MUTANT
combat cancer by targeting only the 2/3 of advanced stage CML

diseased cells. Is this the breakthrough with imatinib resistance
we've been waiting for? :
arEn h ™

IC,, ~200 nM IC,, > 10,000 nM




5 Imatinib vs Nilotinib
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Phe382

Cancer Cell. 2005, 7:129-41.



5 Dasatinib addresses imatinib resistance mutations, but
fails with mutant T315I

Dasatinib
Bristol Myers Squibb, approved in 2011
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Scaffold hopping via pharmacophore modeling Cancer Res. 2006 , 66: 5790-7.
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ARTICLES

Targeting Bcr-Abl by combining allosteric
with ATP-binding-site inhibitors

Jianming Zhang'*, Francisco J. Adrian®*, Wolfgang Jahnke’, Sandra W. Cowan-Jacob’, Allen G. Li?,

Roxana E. lacob®, Taebo Sim"?, John Powers®, Christine Dierks®, Fangxian Sun®, Gui-Rong Guo®, Qiang Ding?,
Barun Okram’, Yongmun Choi', Amy Wojciechowski', Xianming Deng’, Guoxun Liu?, Gabriele Fendrich®,

André Strauss’, Navratna Vajpai®, Stephan Grzesiek®, Tove Tuntland’, Yi Liu?, Badry Bursulaya?,

Mohammad Azam®, Paul W. Manley?, John R. Engen®, George Q. Daley®, Markus Warmuth? & Nathanael S. Gray'

GNE=2binds toitheimyristate-pindingsite;of;Ablleads toichangesinithe

structuralidynamicsiof:theiproteinyand thusinhibitsiallostericinteractions!



5 Polypharmacological strategy: Inhibition of allosteric
interaction site in addition to catalytic site

Simultaneously targeting of
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Evidence for GNF-2 binding to the myristate pocket of
Abl. HSQC spectrum of Abl/imatinib with (red) and without
(black) GNF-2 (top) shows chemical shift changes induced
by ligand binding. Mapping of chemical shift changes to
structure (PDB 10PK8) identifies the myristate pocket as the
GNF-2 binding site. b, Same as a except myristic acid used
instead of GNF-2.

Khateb et al. 2012 Overcoming Bcr-Abl T3 151 mutation by
combination of GNF-2 and ATP competitors in an Abl-independent mechanism.



Quantitative Systems Pharmacology:
Integrating Quantitative Models with Experimental Data for Drug
Discovery
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Nobeli et al., Nature Biotechnology (2009)

A Role for Computational Biology

Box 2 A role for computational biology?

Predicting protein promiscuity is a problem of daunting
complexity for bioinformaticians. Indeed, earlier work has shown
that bioinformatics methods need improving to reliably uncover
promiscuous reactions!1’, and our own in silico work in protein
function prediction118:112 has curbed our optimism. Even so, we
do not doubt that certain areas of bioinformatics research will be
important for progress in this field. Some of these avenues have
already been pursued by computational biologists, but referencing
individual studies is outside the scope of this review.

Data analysis. There is a great deal of data on protein promiscuity
to be found in function-related databases. Collating information
on promiscuous proteins would be a necessary first step, and
existing enzyme, pathway or ontology databases can provide

a lot of information on proteins with multiple EC numbers,
reactions or substrates, or function categories for genes.

Clues as to moonlighting might also be found from expression
data. Unexpected expression patterns that do not correlate

with our knowledge of existing networks are often indicative

of a moonlighting function for a protein. Such data would be
complemented by data on alternative splicing of a single gene,
which will give hints to any additional roles in the cell.

Sequence-based methods. Large protein families with many

Structure-based methods. Analyzing binding site
characteristics could reveal those that make proteins more
amenable to promiscuity.

Docking profiles. Probing the binding site with panels of
selected ligands or other proteins can assess how restrictive the
site is toward different types of molecules.

Flexibility. /n silico studies of the flexibility of proteins can
reveal how this may contribute to recognizing multiple partners.

Redundancy in pathways. The evidence of redundancy in
metabolic and regulatory networks should be examined
carefully, as it may also contain evidence for protein
functional promiscuity.

Calculation of promiscuity indices. This could be based on
in silico or experimental data and could help rank proteins and
their partners according to their interaction promiscuity.

Mapping of small-molecule space to protein space. This would
reveal any preferences of protein families for sets of chemical
groups and possibly allow the engineering of mutatants capable
of binding small molecules from neighboring parts of the
chemical space.

These are only some possible directions that could be explored

relatives may indicate a trend toward promiscuity. Is there a
correlation between number of orthologs and number of paralogs
and how could it be explained?

to improve our chances of successfully exploiting promiscuity.
Experimental verification of any rules learned and predictions
made will be indispensable.




