Introduction to evolutionary concepts and VMD/MultiSeq - Part I

Characterizing molecular systems

Zaida (Zan) Luthey-Schulten
Dept. Chemistry, Physics, Beckman Institute, Institute of Genomics Biology, & Center for Biophysics

Workshop June 2015, Pittsburgh
NIH Center Macromolecular Modeling and Bioinformatics
Carl Woese - “VMD is far from a simple visualization tool for a biologist, it is a true thinking tool. Without it a whole class of biological hypotheses would simply not exist.”

VMD/MultiSeq - “A Tool to Think”

Evolutionary profiles for protein structure & function prediction

Signatures ribosomal evolution

LSU (23S rRNA + rproteins)
Why Look at More Than One Sequence?

1. Multiple Sequence Alignment shows patterns of conservation

2. Are these positions functionally important? Active sites, folding,..

3. What and how many sequences should be included?

4. Where do I find the sequences and structures for MS alignment?

5. How to generate pairwise and multiple sequence alignments?
Protein (RNA) Folding, Structure, & Function
New Tools in VMD/MultiSeq

Protein / RNA
Sequence Data

- SwissProt DB (400K)
- Greengenes RNA (100K)
- Signatures, Zoom

Metadata Information,
Clustal, MAFFT &
Phylogenetic Trees

- RAXml Trees,
- Genomic Content,
- Temperature DB

Blast & PsiBlast
Sequence Editor

Sequence /Structure
Alignment

Protein & RNA
secondary structure

QR non-redundant
seq / str sets

Cluster
analysis /
Bioinformatics
scripting

Tutorials MultiSeq/
AARS

EF-Tu/Ribosome

Protein:RNA Complexes in Translation
Evolutionary Analysis & Dynamics

“Evolution AARS Structure” MMBR 2003
“Evol. Profiles Class I&II AARS” JMB 2005
“Evolution SepRS/CysRS” PNAS 2005
“Dynamic Signaling Network” PNAS 2009
“Exit Strategy Charged tRNA” JMB 2010
“Mistransl. in Mycoplasma” PNAS 2011
“Capture & Selection of ATP” JACS 2013

“Dynamical Recognition & tRNA Dynamics” JMB 2008, FEBS 2010
Network Viewer, Bioinf., JCTC 2012

r-Proteins/r-RNA Ribosome LSU
“Motion L1 Stalk:tRNA” JMB 2010,
“Ribosome Biogenesis” JPC 2012,3
Basic principles of evolutionary analysis for proteins & RNAs

• Comparative analysis of sequences and structures
• Multiple sequence alignments (gaps and editing)
• Sequence and structure phylogenetic trees*
• Reference to 16S rRNA tree
• Horizontal or lateral gene transfer events
• Genomic context
• Evolutionary profiles representing diversity
• Conservation analysis of evolutionary profiles

*Various models of evolutionary change
Alignment of ~200 EF-Tu sequences in VMD/MultiSeq

“Classic”
ClustalW
alignment
~ 5 minutes

MAFFT7*
alignment
~ 30 seconds
More sequences!

“G” scattered around gaps

“G” aligned

http://www.clustal.org/clustal2/

* MAFFT v7.221, Katoh and Standley, Mol.Biol and Evol. 2015
Sequence Alignment & Dynamic Programming

Seq. 1: \(a_1 \ a_2 \ a_3 \ldots a_n \)
Seq. 2: \(c_1 \ c_2 \ c_3 \ c_4 \ c_5 \ldots c_m \)

Needleman-Wunsch alignment algorithm

\[
H(i, j) = \text{MAX} \begin{cases}
H(i-1, j-1) + S[a(i), b(j)] \\
H(i, j-k) - W(k), \\
H(i-m, j) - W(m)
\end{cases}
\]

Number of possible alignments:

\[
\binom{2n}{n} = 2^n \left(\sqrt{n \pi} \right)^{-1}
\]

Needleman-Wunsch Global Alignment

Similarity Values

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>G</th>
<th>K</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>5</td>
<td>-3</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>G</td>
<td>-3</td>
<td>6</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>P</td>
<td>-2</td>
<td>-2</td>
<td>-1</td>
<td>7</td>
</tr>
</tbody>
</table>

Initialization of Gap Penalties

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>G</th>
<th>K</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>-6</td>
<td>5</td>
<td>-3</td>
<td>-1</td>
</tr>
<tr>
<td>G</td>
<td>-12</td>
<td>-3</td>
<td>6</td>
<td>-2</td>
</tr>
<tr>
<td>P</td>
<td>-18</td>
<td>-2</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>K</td>
<td>-24</td>
<td>-1</td>
<td>-2</td>
<td>5</td>
</tr>
<tr>
<td>K</td>
<td>-30</td>
<td>-1</td>
<td>-2</td>
<td>5</td>
</tr>
<tr>
<td>P</td>
<td>-36</td>
<td>-2</td>
<td>-2</td>
<td>-1</td>
</tr>
</tbody>
</table>

http://genome.dkfz-heidelberg.de/husar/fileadmin/handouts/02pairwise_method.pdf
Filling out the Score Matrix H
Traceback and Alignment

The Alignment

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>G</th>
<th>K</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>-6</td>
<td>5</td>
<td>-1</td>
<td>-7</td>
</tr>
<tr>
<td>G</td>
<td>-12</td>
<td>11</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td>-18</td>
<td>5</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>K</td>
<td>-24</td>
<td>-13</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>K</td>
<td>-30</td>
<td>-18</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>P</td>
<td>-36</td>
<td>-25</td>
<td>-13</td>
<td>71</td>
</tr>
</tbody>
</table>

Traceback (blue) from optimal score
STAMP - Multiple Structural Alignments

1. Initial Alignment Inputs
 • Multiple Sequence alignment
 • Ridged Body “Scan”
 • Pairwise Alignments and Hierarchical Clustering

2. Refine Initial Alignment & Produce Multiple Structural Alignment

\[
P_{ij} = \left\{ e^{-\frac{d_{ij}^2}{2E_1}} \right\} \left\{ e^{-\frac{s_{ij}^2}{2E_2}} \right\}
\]

- Probability that residue from structure A is equivalent to residue from structure B.
- \(d_{ij} \) = distance between i & j
- \(s_{ij} \) = conformational similarity; function of r.m.s. between i-1, i, i+1 and j-1, j, j+1.

• Dynamic Programming (Smith-Waterman) through P matrix gives optimal set of equivalent residues.
• This set is used to re-superpose the two chains. Then iterate until alignment score is unchanged.
• This procedure is performed for all pairs with no gap penalty

Multiple Structural Alignments

STAMP – cont’d

2. Refine Initial Alignment & Produce Multiple Structural Alignment

Alignment score:

\[
S_c = \frac{S_p}{L_p} \left(\frac{L_p - i_A}{L_A} \right) \left(\frac{L_p - i_B}{L_B} \right)
\]

\[
S_p = \sum_{\text{aln.path}} P_{ij}
\]

\[
L_p, L_A, L_B \quad \text{— length of alignment, sequence A, sequence B}
\]

\[
i_A, i_B \quad \text{— length of gaps in A and B.}
\]

Multiple Alignment:

• Create a dendrogram using the alignment score.
• Successively align groups of proteins (from branch tips to root).
• When 2 or more sequences are in a group, then average coordinates are used.
Structural Overlaps - STAMP

Ribosome large subunit showing ribosomal proteins L2 and L3
180,000 atoms in 4 rRNAs and 58 proteins
Universal Phylogenetic Tree
3 domains of life

Reference 16S rRNA tree

Leucyl-tRNA synthetase displays the full canonical phylogenetic distribution.

For review see Woese PNAS 2000

Woese, Olsen, Ibba, Soll MMBR 2000
Look for horizontal gene transfer events

After W. Doolittle, modified by G. Olsen
Phylogenetic Distributions

Increasing inter-domain of life: Horizontal Gene Transfer

“HGT erodes the historical trace, but does not completely erase it….,” G. Olsen

Woese, Olsen, Ibba, Soll *MMBR* 2000
Protein Structure Similarity Measure

\(Q_H \) Structural Homology
fraction of native contacts for aligned residues +
presence and perturbation of gaps

\[
Q_H = \mathbb{N} \left[q_{aln} + q_{gap} \right]
\]

\[
q_{aln} = \sum_{i < j-2} \exp \left[-\frac{(r_{ij} - r_{i'j'})^2}{2\sigma^2_{ij}} \right]
\]

Structural Similarity Measure: The effect of insertions

“Gaps should count as a character but not dominate” C. Woese

\[Q_H = 0.82, \quad 0.70, \quad 0.62 \]

\[
q_{\text{gap}} = \sum_{g_a} \sum_{j} \max \left\{ \exp \left[-\frac{\left(r_{g_{a,j}} - r_{g_{a,j}'} \right)^2}{2\sigma_{g_{a,j}}^2} \right], \exp \left[-\frac{\left(r_{g_{a,j}} - r_{g_{a,j}''} \right)^2}{2\sigma_{g_{a,j}}^2} \right] \right\} \\
+ \sum_{g_b} \sum_{j} \max \left\{ \exp \left[-\frac{\left(r_{g_{b,j}} - r_{g_{b,j}'} \right)^2}{2\sigma_{g_{b,j}}^2} \right], \exp \left[-\frac{\left(r_{g_{b,j}} - r_{g_{b,j}''} \right)^2}{2\sigma_{g_{b,j}}^2} \right] \right\}
\]
Structure encodes evolutionary information!

sequence-based phylogeny

Euryarchaeota
Crenarchaeota Thermoprotei
Deinococcus-Thermus 2*
Metazoa/Fungi
Euryarchaeota Halobacteria
AsnRS

Deinococcus-Thermus 1
Firmicutes Mollicutes
Deinococcus-Thermus 1
Firmicutes Bacilli
Firmicutes Clostridia
Bacteroidetes

γ-Proteobacteria
β-Proteobacteria
Cyanobacteria
e-Proteobacteria
Chlamydiae
Thermotogae
Aquificae
Spirochaetes
Actinobacteria
Chlorobi
α-Proteobacteria

20 changes

Woese et al MMBR 2000

structure-based phylogeny

Euryarchaeota
P. kodakaraensis d1b8aa2
T. thermophilus d1n9wb2*
Deinococcus-Thermus 2*
Metazoa/Fungi
S. cerevisiae d1asza2
AsnRS
T. thermophilus d11sca2

Deinococcus-Thermus 1
T. thermophilus d1efwa3

γ-Proteobacteria
E. coli d1c0aa3

δQ_H = 0.10

bacterial insertions

archaeal helix extensions, insertion

Da - AspRS archaeal genre
Db - AspRS bacterial genre

JMB 2005 MMBR 2003
Structure reveals distant evolutionary events

Class I AARSs

Class II AARSs
Sequences define more recent evolutionary event:

- Conformational changes in the same protein.
 - ThrRS
 - T-AMP analog, 1.55 Å.
 - T, 2.00 Å.
 - $Q_H = 0.80$
 - Sequence identity = 1.00

- Structures for two different species.
 - ProRS
 - *M. jannaschii*, 2.55 Å.
 - *M. thermoautotrophicus*, 3.20 Å.
 - $Q_H = 0.89$
 - Sequence identity = 0.69
Relationship Between Sequence & Structure

sequence identity > 20%

Structural superposition of AlaRS & AspRS.
• Sequence id = 0.055, $Q_H = 0.48$

Structural alignment & visualization software MultiSeq/VMD

The sequence signal degrades rapidly.
sequence identity < 10%

sequence

identity

> 20\%

AlaRS

AspRS

Bacteria

Archaea

Eucarya
Non-redundant Representative Profiles

Too much information
129 Structures

Economy of information
16 representatives

Multidimensional QR factorization of alignment matrix, A.

$A = \begin{bmatrix}
X \\
Y \\
Z \\
G
\end{bmatrix}$

$A_{\text{align}} l_{\text{align}}$ k_{proteins}

QR computes a set of maximal linearly independent structures.

Numerical Encoding of Proteins in a Multiple Alignment

Encoding Structure
Rotated Cartesian + Gap = 4-space

Aligned position \((x_{C\alpha}, y_{C\alpha}, z_{C\alpha}, 0)\)

Gapped position \((0, 0, 0, g)\)

Gap Scaling \(g = \gamma\frac{\|X\|_{F_4} + \|Y\|_{F_4} + \|Z\|_{F_4}}{\|G\|_{F_4}}\)

adjustable parameter

Sequence Space
Orthogonal Encoding = 24-space

23 amino acids \((20 + B, X, Z) + \text{gap}\)

A = \((1, 0)\)

B = \((0, 1, 0)\)

C = \((0, 0, 1, 0)\)

...\n
GAP = \((0, 1)\)

Alignment is a Matrix with Linearly Dependent Columns

\[A = \begin{bmatrix}
\end{bmatrix} \]

\[Q_{(d)}^T A_{(d)} P = Q_{(d)}^T \]

\[P = \tilde{R}_{(d)} \]

A maximal linearly independent subset can be determined with respect to a threshold, e.g., similarity measure threshold.
Evolution of Structure and Function in AspRS

i) class II

ii) subclass IIB
 - anticodon binding (ACB) domain

iii) AspRS

iv) bacterial AspRS

v) E. coli AspRS
Summary Structural Evolutionary Profiles

1. Structures often more conserved than sequences!! Similar structures at the Family and Superfamily levels. Add more structural information to identify core and variable regions.

2. Which structures and sequences to include? Use evolution and eliminate redundancy with QR factorization.
New Tools in VMD/MultiSeq

Protein / RNA Sequence Data
- SwissProt DB (400K), Greengenes RNA (100K)
- Signatures, Zoom

Metadata Information, Clustal & Phylogenetic Trees
- RAXml Trees, Genomic Content, Temperature DB
- Blast & PsiBlast
- Sequence Editor

Sequence /Structure Alignment
- Protein & RNA secondary structure
- QR non-redundant seq / str sets
- Cluster analysis / Bioinformatics scripting
- Tutorials MultiSeq/AARS
- EF-Tu/Ribosome

MultiSeq Combines Sequence and Structure

- Align sequences or structures; manually edit alignments
- View data colored by numerous metrics including structural conservation and sequence similarity
- Synchronized coloring between 1D and 3D views

<table>
<thead>
<tr>
<th>Sequence Name</th>
<th>Sequence</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1asy_R</td>
<td>U G U C X C G U G C C A G A U X G G G G T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1cGlL_B</td>
<td>U X U C A G C C A G G G X C G C C G X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1bla_A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110w_A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1asy_A</td>
<td>D R T G K R V K F V D L D E A K D S D K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1g51_A</td>
<td>M R T E Y C G Q L R L S H V G Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1n9w_A</td>
<td>M R V L V R D L K A H V G Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1g51_A</td>
<td>M R T E Y C G Q L R L S H V G Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variation in structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variation in sequences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYD1_STRMU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYD2_STRMU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYDC_YEAST</td>
<td>D R T G K R V K F V D L D E A K D S D K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYD_M_YEAST</td>
<td>K K F L F K K D T S T I K Q L K G L S S G Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYD_AERPE</td>
<td>M L K D R F I A D I I A S K E S L V G Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYD_AGRT5</td>
<td>M H R Y R S H T C A A L R K S D V G E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYD_ANASP</td>
<td>M R T H Y C G E L R Q K D I G E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYD_AQAE</td>
<td>Y G D F K R T K Y C G E V S E E D I G K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYD_ARCFU</td>
<td>M R V Y T A D V K P E M E G Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYD_BACAN</td>
<td>M A R T H A C G K V T V E A V G Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYD_BACOR</td>
<td>M A R T H A C G K V T V E A V G Q</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Load large sequence sets*

<table>
<thead>
<tr>
<th>Database</th>
<th>Description</th>
<th>Sequences/Entries</th>
<th>Size on Disk</th>
<th>Time to Load</th>
<th>Memory Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swiss-Prot (Proteins)</td>
<td>Curated sequences</td>
<td>392,667 sequences</td>
<td>177 MB</td>
<td>2 minutes</td>
<td>2.4 GB</td>
</tr>
<tr>
<td>Greengenes (RNA)</td>
<td>Environmental 16S rRNA</td>
<td>90,654 entries</td>
<td>670 MB</td>
<td>2.5 minutes</td>
<td>4.0 GB</td>
</tr>
</tbody>
</table>

*"Signatures of ribosomal evolution" with Carl Woese, PNAS (2008)
*Release May 2013 contains 1.2 million sequences – Memory??
Sequence editor

- New sequence API allows editing of large alignments. Align closely related sequences by group, combine groups, and then manually correct.
- Zoom window gives an overview of the alignment, quickly move the editing window to any part of the alignment.

660 sequences of ribosomal protein S4 from all complete bacterial genomes.

Phylogenetic tree editor

- Automatically add annotations and colors to phylogenetic trees based on taxonomy, enzyme, temperature class, and/or MultiSeq groupings.

A cluster of five proteobacterial sequences branch near the cyanobacterial sequences. These are cases of horizontal gene transfer.

Maximum likelihood tree of 660 S4 sequences reconstructed using RAxML.

Elijah Roberts 2009
Scripting MultiSeq

• All MultiSeq functions can be scripted.
• Scripting an analysis provides benefits:
 – It can be checked for correctness.
 – It can be quickly repeated by anyone.
 – It can be modified later with new functionality.
 – It can be run on a cluster in VMD text mode.
 (if it can be easily broken into independent chunks)
• Many functions are too user specific and/or too complex to be turned into a GUI.
• Some examples of MultiSeq scripts…
Genome content

- When using sequence from fully sequenced genomes, additional information is available in the genome content.
- Conservation of gene ordering, neighbors, or intergenic regions can provide additional evolutionary information not contained in the sequence.
- Gene names and ordering can be obtained from the genome PTT files, want to organize the information in an evolutionarily meaningful manner.

<table>
<thead>
<tr>
<th>Location</th>
<th>Strand</th>
<th>Length</th>
<th>PID</th>
<th>Gene</th>
<th>Synonym</th>
<th>Code</th>
<th>COG</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>3437638..3438021</td>
<td>-</td>
<td>127</td>
<td>16131173</td>
<td>rplQ</td>
<td>b3294</td>
<td>COG0203J</td>
<td>50S ribosomal subunit protein L17</td>
<td></td>
</tr>
<tr>
<td>3438062..3439051</td>
<td>-</td>
<td>329</td>
<td>16131174</td>
<td>rpoA</td>
<td>b3295</td>
<td>COG0202K</td>
<td>RNA polymerase, alpha subunit</td>
<td></td>
</tr>
<tr>
<td>3439077..3439697</td>
<td>-</td>
<td>206</td>
<td>16131175</td>
<td>rpsD</td>
<td>b3296</td>
<td>COG0522J</td>
<td>30S ribosomal subunit protein S4</td>
<td></td>
</tr>
<tr>
<td>3439731..3440120</td>
<td>-</td>
<td>129</td>
<td>16131176</td>
<td>rpsK</td>
<td>b3297</td>
<td>COG0100J</td>
<td>30S ribosomal subunit protein S11</td>
<td></td>
</tr>
<tr>
<td>3440137..3440493</td>
<td>-</td>
<td>118</td>
<td>16131177</td>
<td>rpsM</td>
<td>b3298</td>
<td>COG0099J</td>
<td>30S ribosomal subunit protein S13</td>
<td></td>
</tr>
<tr>
<td>3440640..3440756</td>
<td>-</td>
<td>38</td>
<td>16131178</td>
<td>rpmJ</td>
<td>b3299</td>
<td>COG0257J</td>
<td>50S ribosomal subunit protein L36</td>
<td></td>
</tr>
<tr>
<td>3440788..3442119</td>
<td>-</td>
<td>443</td>
<td>16131179</td>
<td>secY</td>
<td>b3300</td>
<td>COG0201U</td>
<td>preprotein translocase membrane subunit</td>
<td></td>
</tr>
<tr>
<td>3442127..3442561</td>
<td>-</td>
<td>144</td>
<td>16131180</td>
<td>rplO</td>
<td>b3301</td>
<td>COG0200J</td>
<td>50S ribosomal subunit protein L15</td>
<td></td>
</tr>
<tr>
<td>3442565..3442744</td>
<td>-</td>
<td>59</td>
<td>16131181</td>
<td>rpmD</td>
<td>b3302</td>
<td>COG1841J</td>
<td>50S ribosomal subunit protein L30</td>
<td></td>
</tr>
<tr>
<td>3442748..3443251</td>
<td>-</td>
<td>167</td>
<td>16131182</td>
<td>rpsE</td>
<td>b3303</td>
<td>COG0098J</td>
<td>30S ribosomal subunit protein S5</td>
<td></td>
</tr>
</tbody>
</table>
Combined genomic context/phylogenetic tree

- Use a script to walk through a phylogenetic tree, find the genome content near the source gene, create a graphical representation of the combined data.

```bash
proc draw_genome_context_of_phylogeny {args} {
    # Load the sequences.
    set alignment [::SeqData::Fasta::loadSequences $alignmentFilename]

    # Load the tree
    set tree [::PhyloTree::Newick::loadTreeFile $treeFilename]

    # Reorder the alignment by the tree.
    set treeAlignment {}
    set leafNodes [::PhyloTree::Data::getLeafNodes $tree]
    foreach node $leafNodes {
        set foundNode 0
        set nodeName [::PhyloTree::Data::getNodeName $tree $node]
        foreach sequence $alignment {
            if {$nodeName == [::SeqData::getName $sequence]} {
                lappend treeAlignment $sequence
                set foundNode 1
                break
            }
        }
    }

    # Draw the genomic context.
    drawGenomicContextOfAlignment $outputFilename $treeAlignment $contextDistance $scaling $genomeDirectory
}
```
Combined genomic context/phylogenetic tree

```plaintext
proc drawGenomicContextOfAlignment {outputFilename alignment contextDistance scaling genomeDirectory} {
    foreach sequence $alignment {
        # Make sure we have the GI number for this sequence.
        set giNumber [::SeqData::getSourceData $sequence "gi"]

        # Make sure we can tell which genome this sequence is from.
        set taxonomy [join [::SeqData::getLineage $sequence 1 0 1] ","]
        if {![info exists genomeTaxonomyMap($taxonomy)]} {
            error "ERROR) Unknown genome for sequence [::SeqData::getName $sequence]: $taxonomy"
        }

        # Go through each of the genome context files for the genome.
        set foundGene 0
        foreach genomeName $genomeTaxonomyMap($taxonomy) { ...

        # Draw the genomic context.
        drawMultipleGenomicContext $outputFilename $alignment $geneFiles $genePositions $geneStrands $contextDistance
    }
}
```
Genome content future directions

- Genome content still a work in progress.
- Good candidate for a GUI: combined phylogenetic tree/genome content viewer.
- Can also use COG codes to color by gene function.
- Still need API for manipulating PTT files.

See also ITEP for microbial genomes, Benedict et al. BMC Genomics 2014

Genome content of ribosomal protein S4 by occurrence of the gene in the alpha operon.

Fifteen Clostridia genomes contain two copies of S4: one zinc-binding and one zinc-free.
Molecular Signatures of Translation- Drug Targets

16S rRNA

- *E. coli*
- *T. thermophilus*
- *H. marismortui*

Ribosomal Signatures: Idiosyncrasies in rRNA and/or r-proteins characteristic of the domains of life

69 (119) & 6 (14) in 16S (23S)

23S rRNA

- *E. coli*
- *T. thermophilus*
- *H. marismortui*

“Molecular Signatures of Ribosomal Evolution” (2008)

Flexible Grouping of Data

- Automatically group data by taxonomic classification to assist in evolutionary analysis (HGT) or create custom groups.
- Apply metrics to groups independently, e.g. bacterial signal.
MultiSeq: Display and Edit Metadata

- External databases are cross-referenced to display metadata such as taxonomic information and enzymatic function.
- Changes to metadata should periodically be updated!!!
- Electronic Notebook: Notes and annotations about a specific sequence or structure can be added – and saved.

There were missing residues.
VMD/MultiSeq - Summary

1. Visualization, analysis tools, modeling large and long timescale biomolecular simulations, coarse-grained particles - **VMD**

2. Evolutionary and genetic information integration with structural information *Proteins/RNA* – **MultiSeq (Msalign, Metadata)**

3. Integrate simulation data and databases with graphical interface - **MultiSeq (Translation Tutorials, Metadata) & VMD**

4. Support high performance interactive and batch mode analysis - **MultiSeq & VMD (e.g. analyze all rproteins, genomic content)**

5. Improve graphics quality and performance using emerging technologies (*GPU acceleration, programmable shading*) **VMD**