

Hands-on Workshop on Computational Biophysics

0

by

The Theoretical and Computational Biophysics Group (TCBG)

and

The National Center for Multiscale Modeling of Biological Systems (MMBioS)

Workshop Program

Thu, May 22: Collective Dynamics of Proteins Using Elastic Network Models -

Bahar, Tim Lezon and Chakra Chennubhotla

Fri, May 23: Druggability Simulations, and Analyzing Sequence Patterns and Structural Dynamics - *Ivet Bahar*, *Indira Shrivastava, Chakra Chennubhotla*,

Druggable Genome

72

A small subset of are 'disease-modifying' – and not all of them are druggable

Hopkins and Groom, *Nat Reviews Drug Disc*, 2002

Druggable or not?

2

Druggability Simulations

2

2

Methodology Overview

From MD simulations to achievable drug affinities

Annealing, Equilibration, Simulation

NAMD2 with CHARMM force field was used for simulations.

Free Energy of Binding for Isopropanol

Assuming that MD sampling converged to a **Boltzmann ensemble**

N_i corresponds to the central highlighted grid element; number of cubes is introduced if multiple cubes are occupied by a single isopropanol

Selecting Isopropanol Binding Spots

- I. Grid element with lowest ΔG value is selected
- Other elements within 4 Å are removed (elements inside the red sphere ->)
- 3. I and 2 are repeated until no more points are left to remove

Affinity of a Drug-size Molecule

A heuristic approach for calculating achievable free energy of binding

- Assuming binding of an isopropanol is independent of others
- 7 spatially close binding spots are selected
 - The sum of $\Delta G_{binding}$ of individual points is considered as a binding free energy estimate that is achievable by a drug-like molecule

MDM2: p53 binding site

p53 peptide key interactions (X-ray)

Highest affinity solution (7 points)

Numbers indicate the order that hot spots were merged by the growing algorithm

Predicted binding affinity range Predicted max. affinity by Seco et al. : 0.05-0.3 nM : 0.02 nM

MDM2: p53 binding site

An inhibitor that disrupts p53 binding

Hot spots matching this inhibitor

Correspondence of inhibitor in the hot spot volume

Predicted K_d : **47 nM** Known K_d : **80 nM**

Proteins may have multiple target sites

Assessment of druggable allosteric sites

J Med. Chem. 2009, 52, 7970-7973

Bioorg. Med. Chem. Lett. 2003, 13, 3947-3950

Biochemistry 2004, 43, 2394-2404

J Med. Chem. 2010, 53, 2973-2985

Probes capture allosteric modulator site of AMPAR LBD Dimer

Experimental Results

2

Pohlsgarrd et al (2011). Neuropharmacology. 60,135-150.

Computational modeling detects experimentally observed binding site

Dutta, Greger, Bahar, manuscript in preparation.

Interfacial regions captured in AMPAR NTD

Dutta, Greger, Bahar, manuscript in preparation.

SUMMARY

2

- Structure-encoded **flexibility** of drug targets and significance in drug discovery and design
 - Druggability assessment: a first step before selecting a target
 - Modularity and promiscuity of proteins and quantitative systems pharmacology methods

Diversity & complexity of phenotypes arise from combinations of proteins & modular domains

Bhattacharyya et al. Annual Rev Biochem 2006

Significance of targeting a specific site, not only a target protein

Allostery Can Diversify Cellular Signaling Pathways through a Single Receptor

3

GPCRs use **conformational selection** to shape signaling.

Two (different) conformations of GPCR bind two (different) agonists, which branch into two pathways

Nussinov & Tsai (2013) "Allostery in Disease and Drug Discovery" Cell 153, 293-305.

Protein Promiscuity

Many proteins are involved in multiple pathways.

Depending on the targeted **surface** region, or on the accessible **structural change/dynamics**

the interactions with different (or multiple) upstream or downstream partners/substrates may be affected,

which in turn would impact different (or multiple) pathways, and may result in various phenotypes

Assessment of druggable allosteric sites

Imatinib (Gleevec)

Imatinib was developed for chronic myelogenous leukemia (CML), but was also used for gastrointestinal stromal tumors (GISTs) and some other diseases.

WILD-TYPE

STI-57

2/3 of advanced stage CML with imatinib resistance

T3151 MUTANT

IC₅₀ > 10,000 nM

Imatinib vs Nilotinib

5

Cancer Cell. 2005, 7:129-41.

Dasatinib addresses imatinib resistance mutations, but fails with mutant T315

Dasatinib Bristol Myers Squibb, approved in 2011

Scaffold hopping via pharmacophore modeling

Vol 463 28 January 2010 doi:10.1038/nature08675

ARTICLES

Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors

Jianming Zhang¹*, Francisco J. Adrián²*, Wolfgang Jahnke³, Sandra W. Cowan-Jacob³, Allen G. Li², Roxana E. Iacob⁴, Taebo Sim^{1,5}, John Powers⁶, Christine Dierks², Fangxian Sun², Gui-Rong Guo², Qiang Ding², Barun Okram⁷, Yongmun Choi¹, Amy Wojciechowski¹, Xianming Deng¹, Guoxun Liu², Gabriele Fendrich³, André Strauss³, Navratna Vajpai⁸, Stephan Grzesiek⁸, Tove Tuntland², Yi Liu², Badry Bursulaya², Mohammad Azam⁶, Paul W. Manley³, John R. Engen⁴, George Q. Daley⁶, Markus Warmuth⁹ & Nathanael S. Gray¹

GNF-2 binds to the myristate-binding site of Abl, leads to changes in the structural dynamics of the protein, and thus inhibits allosteric interactions!

Polypharmacological strategy: Inhibition of allosteric interaction site in addition to catalytic site

Evidence for GNF-2 binding to the myristate pocket of Abl. HSQC spectrum of Abl/imatinib with (red) and without (black) GNF-2 (top) shows chemical shift changes induced by ligand binding. Mapping of chemical shift changes to structure (PDB 10PK8) identifies the myristate pocket as the GNF-2 binding site. **b**, Same as **a** except myristic acid used instead of GNF-2.

Simultaneously targeting of

the ATP binding site (by Gleevec) the myristate pocket (by GNF-2)

Khateb et al. <u>BMC Cancer</u>, 2012 Overcoming Bcr-Abl T315I mutation by combination of GNF-2 and ATP competitors in an Abl-independent mechanism.

nature chemical biology

Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages

Molina G,* Vogt A,* Bakan A,* et al. Nat Chem Biol, 2009, 9, 680-7.

Experiments with transgenic zebrafish embryo showed that FGF signaling is enhanced in the presence of BCI

Fibroblast growth factor binding activates the MAPK pathway, leading to cell proliferation, organ development. Dusp6 serves as an attenuator/regulator by inhibiting ERK

nature chemical biology

Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages

Molina G,* Vogt A,* Bakan A,* et al. Nat Chem Biol, 2009, 9, 680-7.

Fibroblast growth factor binding activates the MAPK pathway, leading to cell proliferation, organ development. Dusp6 serves as an attenuator/regulator by inhibiting ERK

Zebrafish embryos treated with BCI have enlarged hearts!

Quantitative Systems Pharmacology: Integrating Quantitative Models with Experimental Data for Drug Discovery

3D or 4D images