Intrinsically accessible motions enable Optimal binding of substrate or drugs

Conformational flexibility + sequence variability mediates substrate selectivity

Two conformations of P450-CYP2B4:
 open (orange) with a large substrate (bifonazole, red), and
 closed (light blue) with the smaller substrate
 4-(4-chlorophenyl) imidazole (blue)

Sequence evolution an information-theoretic approach

Residue index

Information entropy (Shannon, 1951)

$$S(i) = \sum_{x_i=1}^{20} P(x_i) \log \frac{1}{P(x_i)}$$

Mutual information (MI)

$$I(i, j) = \sum_{x_i=1}^{20} \sum_{y_j=1}^{20} P(x_i, y_j) \log \frac{P(x_i, y_j)}{P(x_i)P(y_j)}$$

for correlated mutations analysis (CMA)

Mutual Information without the influence of phylogeny

MIp - to eliminate random noise and phylogenetic components

$$MIp(i, j) = I(i, j) - APC$$

APC = Average product correction

=
$$[I(i, x) I(j, x)] / \langle I(i, j) \rangle$$

R		Е	٧	N	
Е		K	٧	Ν	
K		Ε	٧	Ν	
R		D	٧	S	
D		K	٧	S	
D		K	٧	S	
Е		R	٧	S	

where I(i, x) is the mean mutual information of column $i = \sum_{i=1}^{n} I(i, j)$

HIV-I protease correlated mutation analysis (CMA)

FLKII<mark>Q</mark>LLDDY<mark>P</mark>KCF FLKIIQLLNDYPKCF FIKVVELFDEF<mark>P</mark>KCF [EKATKLFTTYDKMI MI matrix $\mathbf{I}_{ij} = \mathbf{I}(i, j)$

residue index

Shi and Malik (2000)

spectral clustering

reordered residue index

MDR mutations distinguished by CMA

MSA of HIV-I protease

Stanford HIV Drug Resistance Database http://hivdb.stanford.edu/

CTLVGTAIHEMMHALGFLHEQNREDRDDWVR
CDKFGIVVHELGHUVOFWHEHTRPDREDHVV
CFRFGTVTHEFTHALGHYHAQSAYTRDDYVL
NFTVGSLIHEIGHAFGLIHEHQRPDRDDYVI
CLTYGTPTHELMHALGFFHEQNRHERDSYVR
CDKFGIVVHELGHUVGFWHEHTRPDREKHVV
CDKFGVUVHELGHUVGFWHEHTRPDRNEFVG
CAYFGTIVHEIGHAIGFHHEQSRPDRDDYIN
CVYHGIIQHELSHALGFYHEHTRSDRNKYVR
CINSGTITHEVLHALGYHEBOARDROYVT

untreated

CTLVGTAIHEMMHALGFLHEQNREDRDDWVR
CDKFGIVVHELGHVVGFWHEHTRPDREDHVV
CFRFGTVIHEFIHALGFYHAQSAYTRDDYVL
NFTVGSLIHEIGHAFGLIHEHQRPDRDDYVI
CLTYGTPIHELMHALGFFHEQNRHERDSYVR
CDKFGIVVHELGHVVGFWHEHTRPDREKHVV
CDKFGVVVHELGHVVGFWHEHTRPDRNEFVG
CAYFGTIVHEIGHAIGFHHEQSRPDRDDYIN
CVYHGIIQHELSHALGFYHEHTRSDRNKYVR
CINSGTIIHEVLHALGYHHEQARADRDGYVT

reordered residue index

Phylogenetic cluster

Summary

two groups of correlated mutation sites

functional aspects	Structural location	structural dynamics
phylogenetic	exposed	mobile
multi-drug resistant	dimerization interface	restrained

- Are key mechanical sites (e.g. hinges) conserved?
- Is there any correlation between sequence variability and structural dynamics?
- How does the structure ensure substrate specificity and conformational adaptability?

A systematic study of a set of enzymes

Evol

Correlation between sequence entropy & conformational mobility

Mobility increases with sequence entropy

Hinge sites are evolutionarily conserved

despite their moderate-to-high exposure to environment

Amino acids involved in intermolecular recognition are distinguished by their co-evolution propensities

Amino acids involved in intermolecular recognition are distinguished by their high global mobility

Summary

Four types of functional sites

Functional site	Mobility in global modes	Sequence evolution	Dominant Feature
Chemical (catalytic, ligand binding)	Minimal	Conserved	high fidelity, precision
Core	Minimal	Conserved	high stability
Hinge sites	Minimal	Conserved	rotational flexibility
Substrate recog- nition (specific)	High	High co-evolution propensity	adaptability

Allosteric communication mechanisms explored by network models

- Diffusion of signal obeys a Markov process
- The structure is modeled as a network
- Network connectivity given by Γ

References

Laplacian based manifold methods (Belkin & Niyogi)

Mar r=

Markov Model of Network Communication

$\Gamma = D - A$ where A = connectivity/affinity matrix and D = diagonal matrix of degrees

A discrete-time, discrete-state Markov process is defined by setting the conditional probability of signal transduction from residue *j* to *i* as

$$m_{ij} = a_{ij}/d_j$$

The conditional probability matrix $\mathbf{M} = \{m_{ij}\}$, also called the Markov transition matrix, is

$$\mathbf{M} = \mathbf{A} \ \mathbf{D}^{-1}$$

M completely defines the stochastics of information transfer over the network of residues.

Hitting time: a measure of communication efficiency between two endpoints

Based on all possible pathways

path	# of steps	Path Probability
j o i	1	0.5
$j \to k \to j \to i$	3	0.5^{2}
$j \to k \to j \to k \to j \to i$	5	0.5^{3}

$$\mathbf{H}(j,i) = 1 \times 0.5 + 3 \times 0.5^2 + \dots = \sum_{j=1}^{\infty} (2j-1) \times 0.5^j, = 3.$$

path	# of steps	Path Probability
i o j o k	2	0.5
$i \rightarrow j \rightarrow i \rightarrow j \rightarrow k$	4	0.5^{2}
$i \to j \to i \to j \to i \to j \to k$	6	0.5^{3}

$$\mathbf{H}(k,i) = 2 \times 0.5 + 4 \times 0.5^2 + \dots = 2 \sum_{j=1}^{\infty} j \times 0.5^j = 4.$$

Fluctuations as determinant of communication

$$H(n,i) = 1 + \sum_{k=1}^{n-1} H(n,k) m_{ki}$$

Commute distance $\sim <(\Delta R_{ij})^2>$

$$H(j,i) = \sum_{k=1}^{n} \left[\Gamma_{ki}^{-1} - \Gamma_{ji}^{-1} - \Gamma_{kj}^{-1} + \Gamma_{jj}^{-1} \right] d_k$$

$$C(i,j) = \left[\left[\Gamma_{ii}^{-1} + \Gamma_{jj}^{-1} - 2\Gamma_{ij}^{-1} \right] \sum_{k=1}^{n} d_k. \right]$$

Communication times

Distribution of Commute Times for Phospholipase A2 (1bk9)

His48, Tyr52, Asp99 – catalytic residues

See also

Active sites are distinguished by effective communication properties

CONCLUSION

- Proteins are designed to favor functional changes in their structure. Pre-existing soft modes facilitate substrate binding.
- Collective mechanics/allosteric dynamics are mediated by conserved residues
- The intrinsic motions confer enhanced flexibility at substrate recognition sites
- Correlated mutations at recognition sites enable substrate specificity while conferring conformational adaptability
- Accurate modeling of protein dynamics is essential to assessing target druggability

Mechanics vs chemistry?

How does complexity scale with size of the system?

Dominance of molecular machinery

DISCUSSION

- Different tools for different time/length windows: MD cannot explore long-time processes for multimeric systems; ANM does not incorporate detailed atomic forces
- Not all evolutionarily correlated sites refer to structural or dynamic correlations
- Accurate modeling of protein dynamics is essential to computer-aided drug discovery, but not sufficient for quantitative evaluation of binding affinity
- Druggability simulations identify druggable sites, but not the type of drugs that optimally bind those sites

