Druggability & DruGUI

Ahmet Bakan

ahb12@pitt.edu

Department of Computational and Systems Biology

Target Druggability

Can a given biological target, such as a protein,

bind with high affinity to a drug?

Druggable or not?

Target Druggability

Druggable Genome

Hopkins and Groom, Nat Reviews Drug Disc, 2002

Why drugs bind proteins?

cMET and Crizotinib (FDA approval in 2011)

Druggability from Experiments

X-ray crystallography

 protein structure is solved in presence of small organic molecules

Mattos and Ridge, Nat Biotechnology, 1996

NMR screening

 compounds from a fragmentlibrary are screened as mixtures of 20-30 compounds, druggability is calculated from chemical shift perturbations

Hajduk et al., J Med Chem, 2005

Structure-based Druggability

- Solvent/Probe Docking
 - isopropanol, acetone, ethane, benzene, etc

Structure-based Druggability

$$\Delta G_{MAP_{POD}} \approx \Delta G_{desolvation}^{target} + \Delta G_{desolvation}^{ligand} + \Delta G_{constant}$$

$$\Delta G_{MAP_{pod}} \approx -\gamma(r) A_{nonpolar}^{target} - \gamma_{constant} A_{nonpolar}^{ligand} + \Delta G_{constant}$$

 $\gamma(r) = \frac{\gamma(\infty)}{1 - \frac{1.4}{r}}$ 1.4 is radius of water, smaller r more druggable

$$K_d = \exp\left(-\frac{\Delta G}{RT}\right)$$
, where $T = 298$ K

Compounds with $IC_{50} \le 5 \mu M$

Compounds with IC $_{_{50}} \leq$ 1 μM

Fungal HSD	HSD H-PGDS	
240 nM	30 nM	
16	200	
2	33	
0	11	

Cheng, A. C. et al. (2007). *Nature biotechnology*, 25(1), 71–5.

MD snapshot evaluation

Not druggable

Druggable

Brown and Hajduk, *Chem Med Chem*, 2006 Lexa and Carlson *J Am. Chem. Soc.* **2010**, *133*, 200-202. Ivetac and McCammon *Chem. Biol Drug Des* **2010**, *76*, 201-217.

Probe Simulations

Mimicking Drugs

Fragment name	1341 approved drugs		
Isobutane	1022 (76%)		
Isopropanol	768 (57%)		
Isopropylamine	337 (25%)		
Acetic acid	284 (21%)		
Acetamide	280 (21%)		
Acetone	239 (17%)		
Urea	61 (5%)		
DMSO	37 (2%)		

35% of orally available drugs are neutral 65% are charged or zwitterionic

Leeson, P. D.; St-Gallay, S. A.; Wenlock, M. C. *Med. Chem. Commun.* **2011**, *2*, 91-105.

eg5 Kinesin Simulations

eg5 and an allosteric inhibitor

eg5 has a role in cell division and is an anti-cancer target

eg5 structure immersed in probes and water

eg5 Kinesin Simulation

Trajectory Analysis

Probe Binding Site Identification

Ligand Efficiency

Ligand binding free energy:

$$\Delta G = -RT \ln (K_d)$$

Ligand efficiency or free energy per atom

$$\Delta g = \Delta G^* / N_{non-hydrogen atoms}$$

* IC_{50} , EC_{50} , K_{i} can replace K_{d}

Hopkins, A., & Groom, C. (2004). Ligand efficiency: a useful metric for lead selection. *Drug Discovery Today*, *9*(10), 430-431. Kuntz, I. D., Chen, K., Sharp, K. a, & Kollman, P. a. (1999). The maximal affinity of ligands. *PNAS*, *96*(18), 9997-10002.

Distribution of ΔG_{probe}

Druggability Index (or Maximal Affinity)

 $\Delta G_{achievable\ by\ a\ drug}$ correlates with sum of $\Delta G_{probe\ binding}$ of 7-8 proximal probes

Druggable or not?

eg5 Druggable Sites

site (0.3 nM)

Eg5-Tubulin Interface

Human kinesin and tubulin structures docked into an EM model at 9 Å resolution

Druggable or not?

Druggable or not? LFA-1 allosteric site Best IC₅₀ **0.35 nM** Prediction 0.03 nM

Lfa1 is a leukocyte cell surface glycoprotein that promotes intercellular adhesion and binds intercellular adhesion molecule 1

Biochemistry 2004, 43, 2394-2404

Druggable or not?

p38 Binding Sites

J Med. Chem. 2010, 53, 2973-2985

p38 MAP kinases are responsive to stress stimuli and are involved in cell differentiation and apoptosis.

Unbound PDB id: 1p38

Ligand bound: 3bv2

p38 – MK2 Interface

Druggability Index (or Maximal Affinity)

Target	Binding site	Best K _d /IC ₅₀	Isopropanol	Probe mixture
MDM2	p53	0.6 nM	0.4-1.0 nM	0.3-2.0 nM
PTP1B	pTyr	2.2 nM	Nd	0.3-0.9 nM
	allosteric ^d	8 μΜ	0.2 μΜ	6-72 μΜ
LFA-1	induced	18.3 nM	0.5-0.8 nM	0.03-0.5 nM
Eg5	allosteric ^d	0.2 nM	27 nM	0.3 nM
	tubulin site	Na	2 nM	0.2 nM
p38	ATP	0.05 nM	1-2 nM	0.01-0.12 nM
	MK2 site	na	2-3 nM	2-3 nM
	MAPK insert	na	13-90 nM	5-210 nM

Cyt c Inhibitor Discovery

How Druggable is Cyt c?

6/13/2013

Probes molecules to Cyt c's taste

Probe content

In silico screening

6/13/2013

Bifonazole

Econazole

Abiraterone

 \blacksquare control $\square 0.25$ $\square 0.5$ $\square 1$ $\square 2$ $\square 5$

DruGUI Demo

DrugGUI

Potential use cases

Identify druggable or ligandable sites

Identify protein interfaces

Develop pharmacophores