Introduction to Molecular Dynamics

PDB Files

gives one the structure and starting position

- Simulations start with a crystal structure from the Protein Data Bank, in the standard PDB file format.
- PDB files contain standard records for species, tissue, authorship, citations, sequence, secondary structure, etc.
- We only care about the atom records...
 - atom name (N, C, CA)
 - residue name (ALA, HIS)
 - residue id (integer)
 - coordinates (x, y, z)
 - occupancy (0.0 to 1.0)
 - temp. factor (a.k.a. beta)
 - segment id (6PTI)
- No hydrogen atoms!

(We must add them ourselves.)

Potential Energy Function of Biopolymer

- Simple, fixed algebraic form for every type of interaction.
- Variable parameters depend on types of atoms involved.

Preparing Your System for MD Solvation

Biological activity is the result of interactions between molecules and occurs at the interfaces between molecules (protein-protein, protein-DNA, protein-solvent, DNA-solvent, etc).

Why model solvation?

• many biological processes occur in aqueous solution

• solvation effects play a crucial role in determining molecular conformation, electronic properties, binding energies, etc

How to model solvation?

- explicit treatment: solvent molecules are added to the molecular system
- implicit treatment: solvent is modeled as a continuum dielectric or so-called implicit force field

mitochondrial bc1 complex

Preparing Your System for MD Solvation

Biological activity is the result of interactions between molecules and occurs at the interfaces between molecules (protein-protein, protein-DNA, protein-solvent, DNA-solvent, etc).

Why model solvation?

• many biological processes occur in aqueous solution

• solvation effects play a crucial role in determining molecular conformation, electronic properties, binding energies, etc

How to model solvation?

• explicit treatment: solvent molecules are added to the molecular system

• implicit treatment: solvent is modeled as a continuum dielectric

mitochondrial bc1 complex

Preparing Your System for MD Solvation

Biological activity is the result of interactions between molecules and occurs at the interfaces between molecules (protein-protein, protein-DNA, protein-solvent, DNA-solvent, etc).

Why model solvation?

• many biological processes occur in aqueous solution

• solvation effects play a crucial role in determining molecular conformation, electronic properties, binding energies, etc

How to model solvation?

• explicit treatment: solvent molecules are added to the molecular system

• implicit treatment: solvent is modeled as a continuum dielectric

mitochondrial bc1 complex

(Usually periodic! Avoids surface effects)

Cutting Corners cutoffs, PME, rigid bonds, and multiple timesteps

- Nonbonded interactions require order N² computer time!
 - Truncating at R_{cutoff} reduces this to order N $R_{cutoff}{}^3$
 - Particle mesh Ewald (PME) method adds long range electrostatics at order N log N, only minor cost compared to cutoff calculation.
- Can we extend the timestep, and do this work fewer times?
 - Bonds to hydrogen atoms, which require a 1fs timestep, can be held at their equilibrium lengths, allowing 2fs steps.
 - Long range electrostatics forces vary slowly, and may be evaluated less often, such as on every second or third step.
- Coarse Graining

Residue-Based Coarse-Grained Model

- Lipid model: MARTINI
- Level of coarse-graining: ~4 heavy atoms per CG bead
- Interactions parameterized based on experimental data and thermodynamic properties of small molecules

- Protein model uses two CG beads per residue
- One CG bead per side chain another for backbone

All-atom peptide

CG peptide

Peter L. Freddolino, Anton Arkhipov, Amy Y. Shih, Ying Yin, Zhongzhou Chen, and Klaus Schulten. **Application of residue-based and shape-based coarse graining to biomolecular simulations.** In Gregory A. Voth, editor, *Coarse-Graining of Condensed Phase and Biomolecular Systems*, chapter 20, pp. 299-315. Chapman and Hall/CRC Press, Taylor and Francis Group, 2008.

Nanodisc Assembly CG MD Simulation

- 10 µs simulation
- · Assembly proceeds in two steps:
 - Aggregation of proteins and lipids driven by the hydrophobic effect
 - Optimization of the protein structure driven by increasingly specific protein-protein interactions
- Formation of the generally accepted double-belt model for discoidal HDL

A. Shih, A. Arkhipov, P. Freddolino, and K. Schulten. J. Phys. Chem. B, 110:3674–3684, 2006; A. Shih, P. Freddolino, A. Arkhipov, and K. Schulten. J. Struct. Biol., 157:579–592,2007; A. Shih, A. Arkhipov, P. Freddolino, S. Sligar, and K. Schulten. Journal of Physical Chemistry B, 111: 11095 - 11104, 2007; A. Shih, P. Freddolino, S. Sligar, and K. Schulten. Nano Letters, 7:1692-1696, 2007.

Example: MD Simulations of the K+ Channel Protein

Ion channels are membrane spanning proteins that form a pathway for the flux of inorganic ions across cell membranes.

Potassium channels are a particularly interesting class of ion channels, managing to distinguish with impressive fidelity between K⁺ and Na⁺ ions while maintaining a very high throughput of K⁺ ions when gated.

Setting up the system (1)

• retrieve the PDB (coordinates) file from the Protein Data Bank

• add hydrogen atoms using PSFGEN

• use psf and parameter files to set up the structure; needs better than available in Charmm to describe well the ions

• minimize the protein structure using NAMD2

Simulating the system: Free MD

Summary of simulations:

• protein/membrane system contains 38,112 atoms, including

5117 water molecules, 100 POPE and 34 POPG lipids, plus K⁺ counterions

- CHARMM26 forcefield
- periodic boundary conditions, PME electrostatics
- 1 ns equilibration at 310K, NpT
- 2 ns dynamics, NpT

Program: NAMD2

Platform: Cray T3E (Pittsburgh Supercomputer Center) or local computer cluster; choose ~1000 atoms per processor.

indicate that the most flexible parts of the protein are the N and C terminal ends, residues 52-60 and residues 84-90. Residues 74-80 in the selectivity filter have low temperature factors and are very stable during the simulation.

Equilibrium Properties of Proteins

Thermal Motion of Ubiquitin from MD Temperature Dependence of Crystal Diffraction (Debye-Waller factor)

Bragg's law
$$2d\sin\theta = \lambda$$

structure factor

$$f_j \exp[-i\vec{s}\cdot\vec{r_j}]$$

But the atom carries out thermal vibrations around equilibrium position \vec{x}_j

$$\vec{r}_j(t) = \vec{x}_j + \vec{u}_j(t)$$

Accordingly:

$$\langle f_j \exp[-i\vec{s}\cdot\vec{r}_j] \rangle = f_j \exp[-i\vec{s}\cdot\vec{x}_j] \langle \exp[-i\vec{s}\cdot\vec{u}_j] \rangle$$

Thermal Motion of Ubiquitin from MD

Temperature Dependence of Crystal Diffraction (Debye-Waller factor)

One can expand:

$$\langle \exp[-i\vec{s}\cdot\vec{u}_j] \rangle = 1 - i \underbrace{\langle \vec{s}\cdot\vec{u}_j \rangle}_{=0} - \frac{1}{2} \langle (\vec{s}\cdot\vec{u}_j)^2 \rangle + ..$$

Spatial average for harmonic oscillator: $\langle (\vec{s} \cdot \vec{u}_j)^2 \rangle = \frac{1}{3} s^2 \langle u_j^2 \rangle$

One can carry out the expansion further and show

$$\langle \exp[-i\vec{s}\cdot\vec{u}_j] \rangle = \exp\left[-\frac{1}{6}s^2\langle\langle u_j^2\rangle\right]$$

Using for the thermal amplitude of the harmonic oscillator

$$\frac{1}{2}m\omega^2 u_j^2 = \frac{3}{2}k_B T$$

one obtains $\langle f_j \exp \left[-i\vec{s} \cdot \vec{r}_j\right] \rangle = f_j \underbrace{\exp[-s^2 k_B T/2m\omega^2]}_{\exp[-i\vec{s} \cdot \vec{x}_j]} \exp[-i\vec{s} \cdot \vec{x}_j]$

Equilibrium Properties of Proteins

Energies: kinetic and potential

Definition of Temperature

$$\langle \sum_j \frac{1}{2} m_j v_j^2 \rangle = \frac{3}{2} N k_B T$$

$$T = \frac{2}{3N k_B} \left\langle \sum_j \frac{1}{2} m_j v_j^2 \right\rangle$$

The atomic velocities of a protein establish a thermometer, but is it

Temperatur Fluctuations

Maxwell distribution

$$dP(v_n) = c \exp(-m v_n^2/2k_BT) dv_n \qquad (7)$$

The atomic velocity thermometer is inaccurate due to the finite size of a protein!

> 100 Temperature [K]

0.12

0.00

Individual kinetic energy $\epsilon_n = m v_n^2/2$

$$dP(\epsilon_n) = (\pi T_0 \epsilon_n)^{-1/2} \exp(-\epsilon_n/k_B T_0) d\epsilon_n$$
 (8)

One can derive (temperature T_0 in units k_B)

$$\langle \epsilon_n \rangle = T_0/2$$
 (9)

$$\langle \epsilon_n^2 \rangle = 3T_0^2/4$$
 (10)

$$\langle \epsilon_n^2 \rangle - \langle \epsilon_n \rangle^2 = T_0^2/2$$
 (11)

The distribution of the total kinetic energy $E_{kin} = \sum_j \frac{1}{2} m_j v_j^2$, according to the central limit theorem, is approximately Gaussian

$$P(E_{kin}) = c \exp \left(\frac{-(E_{kin} - \langle E_{kin} \rangle)^2}{2\left(\frac{3Nk_B^2 T_0^2}{2}\right)}\right) \qquad (12)$$

The distribution function for the temperature $(T = 2E_{kin}/3k_B)$ fluctuations $\Delta T = T - T_0$ is then

$$P(\Delta T) = c \exp[-(\Delta T)^2/2\sigma^2], \quad \sigma^2 = 2T^2/3N$$
 (13)

For $T_0 = 100$ K and N = 557, this gives $\sigma = 3.6$.

Simulated Cooling of Ubiquitin

- Proteins function in a narrow (physiological) temperature range. What happens to them when the temperature of their surrounding changes significantly (temperature gradient) ?
- Can the heating/cooling process of a protein be simulated by molecular dynamics ? If yes, then how?

 What can we learn from the simulated cooling/heating of a protein ?

How to simulate cooling ?

Heat transfer through mechanical coupling between atoms in the two regions Coolant layer of atoms motion of atoms is subject to stochastic Langevin dynamics $m\ddot{r} = F_{FF} + F_H + F_f + F_L$ $F_{FF} \rightarrow$ force field $F_H \rightarrow$ harmonic restrain $F_f \rightarrow$ friction $F_L \rightarrow$ Langevin force atoms in the inner region follow Newtonian dynamics $m\ddot{r} = F_{FF}$

Simulated Cooling - Result

t	$\langle T_{sim} \rangle$						
0.05	298.75	1.05	276.00	1.95	267.00	3.25	261.00
0.15	289.25	1.15	276.50	2.05	268.50	3.45	258.50
0.35	285.50	1.25	275.25	2.25	266.50	3.55	259.50
0.55	282.25	1.35	271.00	2.35	264.50	3.95	256,50
0.65	282.75	1.45	271.75	2.55	263.50	4.05	257.25
0.75	279.00	1.65	269.50	2.65	264.50	4.45	254.00
0.85	277.75	1.75	271.00	2.85	262.00	4.55	255.25
1.00	277.50	1.85	268.00	3.05	262.50	4.85	252.00

Result from simulation

Table 1: Mean temperature $\langle T_{sim} \rangle$ [K] of the protein as a function of time t [ps].

Solution of the Heat Equation **Temperature averaged over volume** $\langle T \rangle(t) = \left(\frac{4\pi R^3}{3}\right)^{-1} \int d^3 \mathbf{r} \, T(\mathbf{r},t) = \frac{3}{R^3} \int_0^R r^2 dr \, T(r,t)$ $= T_{bath} + \sum_{n=1}^{\infty} a_n \exp\left[-\left(\frac{n\pi}{R}\right)^2 Dt\right] \frac{3}{R^3} \int_0^R r dr \sin\left(\frac{n\pi r}{R}\right)^2 dt$ $= T_{bath} + 6 \frac{\Delta T}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left[-\left(\frac{n\pi}{R}\right)^2 D t\right]$ 300 290 simulation Temperature [K] theory 280 270 $D \approx 0.38 \times 10^{-3} \mathrm{cm}^2 \mathrm{s}^{-1}$ 260 250 water $1.4 \times 10^{-3} \text{cm}^2 \text{s}^{-1}$ 1 2 3 4 5 0 Time [ps]

