Part III - Evolutionary Studies Using Multiseq in VMD

Aminoacyl tRNA Synthetases
tRNA
Aquaporins

Frankfurt, 2006, Computational Biology Workshop

University of Illinois at Urbana-Champaign Luthey-Schulten Group Theoretical and Computational Biophysics Group

Evolution of Biomolecular Structure

Class II tRNA-Synthetases and tRNA

MultiSeq Developers: Prof. Zan Elijah Roberts Pat John Eargle Dan Wright

Prof. Zan Luthey-Schulten Patrick O'Donoghue Anurag Sethi Brijeet Dhaliwal March 2006.

Canonical Pattern & Horizontal Gene Transfer

- "The aminoacyl-tRNA synthetases, perhaps better than any other molecules in the cell, eptiomize the current situation and help to understand the effects of HGT" Woese (PNAS, 2000; MMBR 2000)
- Carl Woese Crafoord Prize 2003

Step 1: Explore active site in catalytic domain and anticodon domain in AspRS from Ecoli

Charging the tRNA

Woese, Olsen (UIUC), Ibba (Panum Inst.), Soll (Yale) Micro. Mol. Biol. Rev. March 2000.

Amino Acid Biosynthesis and tRNA Charging

Indirect Pathway

(2a) $Asp + ATP + tRNA^{Asn} \xleftarrow{AspRS} Asp-tRNA^{Asn} + AMP + PP_i$ (2b) $Gln + Asp-tRNA^{Asn} + ATP \xleftarrow{arrideiruns/trust} Asn-tRNA^{Asn} + ADP + P_i + Glu$

Indirect Pathway - AspRS is non-discriminating. Some organisms do not contain genes to make Asn and use Gln as source of ammonia. In that case ID pathway is the only way to obtain Asn and a direct AsnRS not found in the organism. Similar SepRS/SepCysS

Step 1: Creation of the Aminoacyl-Adenylate Complex

Amino Acid + ATP ---- Aminoacyl-AMP + PP_i

In step 1, an O atom of the amino acid a-carboxyl attacks the P atom of the alpha phosphate of ATP. The products are Aminoacyl-AMP containing a mixed carboxy-phosphoanhydride bond and pyrophosphate.

Step 2: Creation of the Aminoacyl-tRNA

In step 2, the 2' or 3' OH of the terminal adenosine of the 3' end of the tRNA attacks the amino acid carbonyl C atom, creating a ribose ester.

Aminoacyl-tRNA Synthetase

Summary of the 2-step reaction:

- 1. amino acid + ATP \rightarrow aminoacyl-AMP + PP_i
- 2. aminoacyl-AMP + tRNA \rightarrow aminoacyl-tRNA + AMP

Overall Reaction:

amino acid + ATP + tRNA \rightarrow aminoacyl-tRNA + AMP

 $+ PP_i$

Next step: EF and Ribosome for Protein Synthesis

Evolution of Protein/RNA Interfaces: EF-Tu/tRNA Recognition

Structure of the E. coli Ribosome

The cutaway view at right shows positions of tRNA (P, E sites) & mRNA (as orange beads).

Figure: Laboratory of Joachim Frank, Wadsworth Center cryo-EM and 3D image reconstruction

The cutaway view at right shows that the **tunnel** in the yeast large ribosome subunit, through which nascent polypeptides emerge from the ribosome, **lines up** with the lumen of the ER **Sec61 channel**.

VMD Movie of Ribosomal Assembly

Horizontal Gene Transfer in Protein Structure

Sequence Phylogeny AspRS-AsnRS Group

tRNA Structure

5' GCGGAUUUAGCUC<mark>AGDDGGGA</mark>GAGCGCCAGA<mark>CUGAAYAY</mark>CUGGAGGUCCUGUG<mark>TYCGAUC</mark>CACAGAAUUCGCACCA 3'

tRNA Secondary Structure

Most RNAs have secondary cloverleaf structure, consisting of stem & loop domains.

Double helical **stems** arise from **base pairing** between complementary stretches of bases within the same strand.

Loops occur where lack of complementarity, or the presence of modified bases, prevents base pairing.

Hydrogen bonds link 2

complementary nucleotide bases on separate nucleic acid strands, or on complementary portions of the same strand.

Conventional base pairs: A & U (or T); C & G.

Guanine

Secondary and Tertiary Interactions for tRNA^{Cys} from E. coli

Hauenstein, S., Zhang, C.M., Hou, Y.M., Perona, J.J. Nat. Struct. Mol. Biol. 11:1134-1141 (2004)

Modified Bases in tRNA^{Cys} from E. coli, S. cerevisiae, and H. volcanii

Limbach, P.A., Crain, P.F., and McCloskey, J.A. Nucleic Acids Res. 22:2183-2196 (1994)

Multiseq extension in VMD

Genetic code

The **genetic code** is based on the sequence of bases along a nucleic acid.

Each **codon**, a sequence of **3 bases** in mRNA, codes for a particular amino acid, or for chain termination.

Some amino acids are specified by 2 or more codons.

The Standard Genetic Code

						UGU	
				UAC		UGC	
UUA	Leu	UCA	Ser	UAA	Stop	UGA	Stop
UUG	Leu	UCG	Ser	UAG	Stop	UGG	Trp
cuu	Leu	сси	Pro	CAU	His	CGU	Arg
CUC	Leu	CCC	Pro	CAC	His	CGC	Arg
CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg
CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg
AUU	lle	ACU	Thr	AAU	Asn	AGU	Ser
AUC	lle	ACC	Thr	AAC	Asn	AGC	Ser
AUA	lle	ACA	Thr	AAA	Lys	AGA	Arg
AUG	*****			AAG		AGG	
GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly
GUC	Val	GCC	Ala	GAC	Asp	GGC	
GUA	Val	GCA	Ala	GAA	Glu	GGA	
GUG	Val			GAG		GGG	

Synonyms (multiple codons for the same amino acid) in most cases differ only in the 3rd base. Similar codons tend to code for similar amino acids. Thus effects of mutation are minimized.

tRNA Databases and Web Resources

MFOLD : Prediction of RNA secondary structure (M. Zuker)

http://bioweb.pasteur.fr/seqanal/interfaces/mfold-simple.html

Vienna RNA Package (Ivo Hofacker)

http://www.tbi.univie.ac.at/~ivo/RNA/

DOE Joint Genome Institute

http://www.jgi.doe.gov/

Compilation of tRNA sequences and sequences of tRNA genes (Mathias Sprinzl)

http://www.uni-bayreuth.de/departments/biochemie/trna/