Evolution of Protein Structure

-		Second	position	u a	_
	U	С	Α	G	
u	UUU UUC UUA UUA Leu	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC Cys UGA Stop UGG Trp	U C A G
c	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG	CGU CGC CGA CGG	U C A G
A	AUU AUC AUA AUG Met/start	ACU ACC ACA ACG	AAU AAC AAA AAA AAG	AGU AGC AGA AGA AGG	U C A G
G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC Asp GAA GAA GIU	GGU GGC GGA GGG	U C A G

Luthey-Schulten Group

Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings

Department of Chemistry, Biophysics, and Beckman Institute University of Illinois at Urbana-Champaign

Universal Phylogenetic Tree three domains of life

Based on 16S rRNA

Leucyl-tRNA synthetase displays the full canonical phylogenetic distribution.

Woese, Olsen, Ibba, Soll MMBR 2000

Evolutionary Theory: Gene Duplication Prior to LUCAS

Evolutionary Theory: Phylogenetic Patterns

Horizontal Gene Transfer Events

C. R. Woese, G. J. Olsen, M. Ibba & D. Söll (2000) MMBR. 64, 202-236.

Evolutionary Theory: Deep phylogeny of protein families

Although the phylogenetic distribution is limited for the circled genes, we can infer that these gene must have been extant prior to & in LUCAS.

P. O'Donoghue, A. Sethi, C. R. Woese & Z. Luthey-Schulten. (2005) PNAS 102:19003-8.

As sequence similarity degrades alignment and phylogeny become unreliable.

How can we probe the molecular evolution of these ancient events?

The Relationship Between Sequence & Structure

Structural alignment & visualization software @ http://www.ks.uiuc.edu/Research/vmd/

Protein Structure Similarity Measure

Q_H Structural Homology

fraction of native contacts for aligned residues + presence and perturbation of gaps

 $Q_H = \aleph \left[q_{aln} + q_{gap} \right]$

$$q_{aln} = \sum_{i < j-2} \exp\left[-\frac{(r_{ij} - r_{i'j'})^2}{2\sigma_{ij}^2}\right]$$

O'Donoghue & Luthey-Schulten MMBR 2003.

Structural Similarity Measure the effect of insertions

"Gaps should count as a character but not dominate" C. Woese

sequence-based phylogeny structure-based phylogeny Euryarchaeota -Euryarchaeota P.kodakaraensis d1b8aa2 · Crenarchaeota Thermoprotei T. thermophilus d1n9wb2* Deinococcus-Thermus 2* Deinococcus-Thermus 2* Da Metazoa/Fungi Metazoa/Fungi Da S. cerevisiae d1asza2 Euryarchaeota Halobacteria AsnRS AsnRS T. thermophilus d11sca2 **Firmicutes Mollicutes** Db Deinococcus-Thermus 1 **Deinococcus-Thermus 1** Firmicutes Bacilli T. thermophilus d1efwa3 Db Firmicutes Clostridia **Bacteroidetes** γ-Proteobacteria - γ-Proteobacteria **B**-Proteobacteria E. coli d1c0aa3 $\delta Q_{\rm H} = 0.10$ Cvanobacteria ε-Proteobacteria Chlamydiae Thermotogae Aquificae - Spirochaetes bacterial Actinobacteria 20 changes insertions Chlorobi α-Proteobacteria archaeal helix extensions, insertion **JMB 2005** Da - AspRS archaeal genre **Db** - AspRS bacterial genre **MMBR 2003**

Protein structure encodes evolutionary information

Protein structure reveals distant evolutionary events Class I AARSs Class II AARSs

structure-based phylogenetics

sequence-structure overlap

Sequences define more recent evolutionary events

Conformational changes in the same protein.

ThrRS

T-AMP analog, 1.55 A. T, 2.00 A.

 $Q_{\rm H} = 0.80$ Sequence identity = 1.00

Structures for two different species.

ProRS

M. jannaschii, 2.55 A. *M. thermoautotrophicus*, 3.20 A.

 $Q_{\rm H} = 0.89$ Sequence identity = 0.69

Non-redundant Representative Sets

QR computes a set of maximal linearly independent structures.

P. O'Donoghue and Z. Luthey-Schulten (2003) MMBR 67:550-571.

P. O'Donoghue and Z. Luthey-Schulten (2005) J. Mol. Biol., 346, 875-894.

Numerical Encoding of Proteins in a Multiple Alignment

A maximal linearly independent subset can be determined with respect to a threshold, e.g., similarity measure threshold.

Applications of Evolutionary Profiles

- I. Genome Annotation AARS MJ1660
- **II. Conserved Core -- Folding Nuclei? HD Exchange?**
- **III. Functional Ancestor ?**
- **IV. Classification of Protein Structures** Superfamilies

Evolutionary Profiles for Homology Recognition AARS Subclass ILMV

The composition of the profile matters. Choosing the right 10 sequence makes all the difference.

A. Sethi, P. O'Donoghue, Z. Luthey-Schulten (2005) JMB, PNAS

Genome Annotation

M.jannaschii genome was completely sequenced in 1996. Genome had four missing AARSs:

AsnRS
GlnRSIndirect MechanismLysRSClass I AARSCysRS?

Cysteinyl-tRNA(Cys) formation in *Methanocaldococcus jannaschii*: the mechanism is still unknown. *J. Bacteriology*, Jan. 2004, **186:**8-14. Ruan B, Nakano H, Tanaka M, Mills JA, DeVito JA, Min B, Low KB, Battista JR, and Söll D.

	Protein	E-value
	HisRS AspRS	1.1e-10 1.9e-10
M. jannaschii genome	PheRS α -chain	9.5e-10
datakaga gaarah uging	ThrRS	6.6e-04
database search using	ProRS	9.1e-03
EP of class II AARS	SerRS	9.2e-03
with HMMER	putative CysRS	1.6e-02 - MJ 1660
	AlaRS	5.1e-02
	GlyRS	0.12 A Sethi P O'Donoghue and
	PheRS β-chain DNA repair protein	$-\frac{0.15}{7.5}$ – Z. Luthey-Sculten. PNAS, 102. 2005

Pathways for cysteine biosynthesis

Direct pathway for cysteine aminoacylation

Sauerwald et al., Science, 307, 2005, 1969-1972.

Genes for Cysteine Biosynthesis and Aminoacylation

	Cys coding			Cys biosynt	esis/coding				
	CysRS	CysE	CysK/M	CBS	CGL	SepRS	SepCysS		
Crenarchaea Aeropyrum pernix	NP_148045	-	NP_148041	NP_147802	NP_147803	-	-		
Sulfolobus solfataricus	NP_343652	+	(NP_341900)	(NP_341900)	(NP_343729)	-	-		
Sulfolobus tokodaii	NP_378245	0.70	(NP_377338)	(NP_377338)	(NP_376392)	-	-		
Pyrobaculum aerophilum	NP_558873	(NP_559322)	(NP_559045)	(NP_559045)	(NP_559999)	-	28		
Euryarchaea									
Haloarcula marismortui	YP_135935	YP_135755	YP_134915	(YP_135866)	(YP_136993)	-			
Halobacterium sp.	NP_280014	NP_280304	NP_280167	NP_279635	(NP_279780)	-	-		
Methanothermobacter thermautotrophicus	-	-	-	-	-	NP_276615	NP_276195		
Methanocaldococcus jannaschii		-	÷.	2	35.	NP_248670	NP_248688		
Methanococcus maripaludis	NP_988180	949	×.	-	64 S	NP_987808	NP_988360		
Methanopyrus kandleri		-	-	-		NP_613724	NP_613516		
Methanosarcina acetivorans	NP_615709	NP_617620	NP_617619	-	(NP_617435)	NP_615064	NP_615682		
Methanosarcina barkeri	AAF18751	40160510*	AAF07039	-	-	ZP_00298242	ZP_00297376		
Methanosarcina mazei	NP_633935	NP_635293	-		NP_635109	NP_633407	NP_633905		
Methanosarcina thermophila	?	AAG01805	AAG01804	?	?	?	?		
Methanococcoides burtonii	?	ZP_00149388	ZP_00149387	?	?	ZP_00147576	ZP_00148017 ZP_00148733		
Methanospirillum hungatei	401798240*	401798540*	401798280*	?	?	40179880*	401798260*		
Methanogenium frigidum	?	?	Contig384. gene842**	?	?	Contig1085. gene108**	Contig1260. gene378**		
Pyrococcus abyssi	NP_127080	NP_126842	(NP_126065)	(NP_126065)	(NP_126586)	-	-		
Pyrococcus furiosus	NP_578753	NP_578497	(NP_578587)	(NP_578587)	NP_578995	-	-		
Pyrococcus horikoshii	NP_142595	-		-	NP_142999	-			
Ferroplasma acidarmanus	401193730*	?	ZP_0306996	?	?	?	?		
Thermoplasma acidophilum	NP_394604	-	(NP_394010)	(NP_394010)	NP_393559	-	-		
Thermoplasma volcanium	NP_111763	-	(NP_111108)	(NP_111108)	(NP_110693)		-		
Picrophilus torridus	YP_022862	-	YP_022929	(YP_023731)	(YP_023880)	-	-		
Archaeoglobus fulgidus	NP_069247			ene ene ene		NP_068951	NP_068869 NP_069020		
Nanoarchaea Nanoarchaeum equitans	NP_069247		-	-	-	-	-P. O'		

*gene object identifiers from Integrated Microbial Genomes database at JGI.

**M. frigidum draft genome sequence, Saunders et al. (2003) Gen. Res. 13, 1580–1588.

All other codes are NCBI-NR database gene identifiers. - absence of gene. ? absence of gene in incomplete genome.

-P. O' Donoghue, A. Sethi, C. Woese, and Z. Luthey-Schulten, PNAS, 2005.

Cysteine Coding & Biosynthesis

Genetic tools will help uncover the role of the native versus the acquired pathways. Experiments: Patrick O'Donoghue (Chemistry, UIUC,Yale), Bill Metcalf (Microbiology, IGB, UIUC), Claudia Reich (Microbiology, UIUC), Michael Hohn & Dieter Söll (Yale University).

Evolution of Structure and Function in AspRS

Evolutionary profile for HisA-HisF family

Sethi, et. al., PNAS, 2005.

Multiseq in VMD : Merging the sequence and structure worlds

2006 MultiSeq: New Features

Analyze the Evolution of Sequence and Structure

sequence Name	_	350			360											-I	750 760																					
Eukaryota	- 3																																					
leov-a.pdb	0	F	H	A	E	N	s	N	T	н	I. R	. •	6 N	0.7	r ji	E	F	т	5		0	c	P	P	H	A	G	G	G	1	0	L	E	R	v	٧	м	F
1axy-ar.pdb	0	F	Ħ	A	E	N	s	N	т	н	R		6 11	1	r i	E	F.	т		1	0	C	P	P	1	A	G	G	G	1	a	L	E	B	۷	٧	м	F
SYDC_YEAST	0	F	8	A	Ε	Ν	s	N	т	н	R		1 1	1	r ii	E	F	т	-	1	g	c	F	P	ÎN.	A	G	G	G	1	a	L	E	8	٧	۷	м	F
SYD_CAEEL	0	F	H.	A	E	D	8	N	т	н	. 8		(M	1	r i	E	F.	٧		3	0	C		P	н	A	G	G	G	1	0	L	E	R	v	т	M	L
SYD_HUMAN	0	F	n	A	E	D	s	N	Т	H	R	. +	4 L	1	r ji	Ē	F	٧	F	1.1	0	A		P	Į.	A	G	G	G	1	a	L	E	8	v	т	м	L
SYD_MOUSE		F	п	A	E	D	s	N	т	H	R		f L		r i	E	F	٧	F	1 1	G	٨		P		A	G	G	G	1	0	L	E	R	٧	т	м	L
SYD_RAT	0	F	R	A	E	D	s	N	т	н	R		1 1		r ii	E	F	٧	F	1 1	G	٨	P	P	H	٨	G	G	G	1	Q	L	Е	R	v	т	м	L
Archaes	1	1				100															1						65								200			
🗆 1b8a-a.pdb	0	F	A	A	E	E	н	N	т	T	B	÷	4 L	. 1	4	É	A	w	F		0	м		P	H	G	0	F	G	L	G	A	Ε	R	L	.1	к	0
1n9w-a pdb	0	-			1	1							14		. 3	ε	۷	L			0	м		P	н	G	G	F	A	1	a	A	E	R	L	т	0	к
SYD_AERPE	0	F	H	A	E	Ρ	н	н	т	s	. 8	+	1 1	. 1	4	Ē	۷	н	H	. 1	0	A	H	P	H	G	G	A	G	M	0	L	E	H	÷	٧	M	0
SYD_METMA	0	F	n	A	E	E	н	D	T	R	1 8		1 1	. 1	4	E	A	т	E	1	0	M		P	H	A	0	w	a	м	a	C	E	8	F	v	м	T
SYD_HALNI		F.	n	A	E	D	F	G	т	ŝ	R		i v	1	3	£	1	A.	F	15	Ó	v	P	P	1	0	0	¥	G	L	0	1	D	A	Ł	1	a	9
SYD_THEAC		F		A	E	£	н	N	т	7	R		1 1	. 1	1	6	F	т		1	0	м		P		A	ä	w	G	L	à	L	.6	B	L	т	M	1
SYD_PYRHO	0	F	n	A	E	E	н	N	T	Ť	R		4 L	. 1	4	ε	A	w	6	8	0	м		P	н	G	0	F	G	L	0	A	E	A	L	1	M	R
SYD_HALVO		F.	n	A	E	E	н	N	т	P	. 8		1 6	. 1	4	É.	A	т		1	0	м		P	H	A	0	F	G	L	0	G	E	n	L	1	M	T
SYD_METJA		F		A	Ē	ε	H	N	т	R	R		1 6	. 1	4	E	A	т			0	м		P	-	A	G	w	G	L	0	A	D	R	F.	т	M	v
SYD_METKA		F	n	A	E	E	н	N	т	R	. 8		1 1	. 1	•	E	A	1			0	м	-	P	н	G	G	w	G	6	0	L	E	n	т	L	м	т
SYD_ARCFU		E	=		E	Ε	н	N	т	T	R		1 1	. 1	4	E	A	1	F	1		м	E	P		٨	G	w	G	L	G		E	R	L	1	M	s
Bacteria																							_															
1c0a-ab.pdb	0	F	11	D	E	D	٤.		R	A	D	F	1 0	2 1	2	E																						
🗆 1eqr-a.pdb	0	F	n	D	E	D	L		R	A	0	F	1 0	1	•	E																						
1g51-a.pdb	0	F	11	D	E	D	L		R	A	D	F	1 0	1	•	D														1	1	-	-			_	~	
110w-a.pdb	0	F	R	D	E	D	L	R	A	D	ι.	F	1 0	1		D														7		L	L	11			6	11
SYDM YEAST	0	F	H	D	E	D	L	R	A	0	έ.	. 1	1 0	2.1	- 11	Ë.																1	-					
SYD_RICCN	0	r.	n	D	E	D	A	R	A	D	R 1	. 5	S P		3	E					-																	-
C SYD SYNPX		F	n	D		D	1	8			1		1 0	2 8	. 8						Θ	6) (1	CL

Plus More Functions

Eliminate Redundancy

Multiseq in VMD 1.8.5

J. Eargle, D. Wright, ZLS Bioinformatics. 2006 Feb 15;22(4):504-6.

E. Roberts, J. Eargle, D. Wright, ZLS in BMC Bioinformatics. Sept. 2006.

John Eargle, Elijah Roberts, Dan Wright, and ZLS.

"Evolution of Structures in Biomolecules" Lectures and Tutorials Frankfurt, 2006

Acknowledgements

Patrick O'Donoghue Anurag Sethi

Rommie Amaro Felix Autenrieth Alexis Black

John Eargle Taras Pogorelov Elijah Roberts Dan Wright

Funding NSF, NIH, DOE Graphics Programmers VMD

Elijah Roberts, Dan Wright, John Eargle Mike Bach, John Stone

Collaborators Evolutionary Studies Gary Olsen, Carl Woese (UIUC) QR Algorithms Mike Heath (UIUC) Protein Structure Prediction Peter Wolynes, Jose Onuchic (UCSD) Ken Suslick (UIUC)