The Molecular Dynamics Method

ATPase, a molecular motor that synthesizes the body’s weight of ATP a day

Fibronectin III_1, a mechanical protein that glues cells together in wound healing and in preventing tumor metastasis

A ternary complex of DNA, lac repressor, and CAP controlling gene expression

AQP filtering a bath tub of the body’s water a day
The Molecular Dynamics Simulation Process
Simulation of large biomolecular systems on parallel computers.

File compatible with original community codes CHARMM & AMBER.

Ten-year collaboration with UIUC Parallel Programming Lab.

2002 Gordon Bell Award for parallel scalability.

Runs at NSF centers, on clusters, and on desktop.

ApoA1 92K atoms with PME

2.3 s/step

8 ms

73% efficient on 256 CPUs

Linear scaling

NAMD Scalable on Parallel Machines

PSC XT3

time per step (seconds)

number of processors

0.001

0.01

0.1

1

10

0

12,000

8,000

4,000

0

Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05

NAMD Registrants

12,095 Registrants (16% NIH)

2,122 Repeat Users (18% NIH)
VMD Molecular Graphics - Structure

“… VMD is far from a simple ‘visualization tool for biologists, it is a true thinking tool. Without it a whole class of biological hypotheses would simply not exist.” - Carl Woese

- Platforms: Unix, Windows, MacOS X
- Display of large biomolecules and simulation trajectories
- Multiple sequence - structure analysis

VMD Registrants
55,422 Registrants (19% NIH)
12,272 Repeat Users (20% NIH)

VMD view of F1-ATPase

Electrostatic potential for an ATPase obtained with VMD’s PME plugin
Classical Dynamics

\[F = ma \text{ at } 300K \]

Energy function:

\[U(\vec{r}_1, \vec{r}_2, \cdots \vec{r}_N) = U(\vec{R}) \]

used to determine the force on each atom:

\[m_i \frac{d^2 \vec{r}_i}{dt^2} = \vec{F}_i = -\nabla U(\vec{R}) \]

yields a set of 3N coupled 2nd-order differential equations that can be propagated forward (or backward) in time.

Initial coordinates obtained from crystal structure, velocities taken at random from Boltzmann distribution.

Maintain appropriate temperature by adjusting velocities.
Langevin Dynamics

come on, feel the noise

Langevin dynamics deals with each atom separately, balancing a small friction term with Gaussian noise to control temperature:

\[m \ddot{\vec{r}} = \vec{F}(\vec{r}) - \gamma m \dot{\vec{r}} + \vec{R}(t) \]

\[\langle \vec{R}(t) \cdot \vec{R}(t') \rangle = 6k_B T \gamma \delta(t - t') \]
Classical Dynamics

Discretization in time for computing

\[m_i \frac{d^2 \mathbf{r}_i}{dt^2} = \mathbf{F}_i = -\nabla U(\mathbf{R}) \]

Use positions and accelerations at time t and the positions from time t-\(\delta t\) to calculate new positions at time t+\(\delta t\).

\[
\begin{align*}
\mathbf{r}(t + \delta t) &\approx \mathbf{r}(t) + \mathbf{v}(t)\delta t + \frac{1}{2}\mathbf{a}(t)\delta t^2 \\
\mathbf{r}(t - \delta t) &\approx \mathbf{r}(t) - \mathbf{v}(t)\delta t + \frac{1}{2}\mathbf{a}(t)\delta t^2
\end{align*}
\]

\[
\mathbf{r}(t + \delta t) \approx 2\mathbf{r}(t) - \mathbf{r}(t - \delta t) + \mathbf{a}(t)\delta t^2 + \left(-\nabla U(\mathbf{R})\right)/m_i
\]
Molecular Structure (bonds, angles, etc.)

Bonds: Every pair of covalently bonded atoms is listed.

Angles: Two bonds that share a common atom form an angle. Every such set of three atoms in the molecule is listed.

Dihedrals: Two angles that share a common bond form a dihedral. Every such set of four atoms in the molecule is listed.

Impropers: Any planar group of four atoms forms an improper. Every such set of four atoms in the molecule is listed.
Potential Energy Function of Biopolymer

- Simple, fixed algebraic form for every type of interaction.
- Variable parameters depend on types of atoms involved.

\[
U(\vec{R}) = \sum_{\text{bonds}} k_i^{\text{bond}} (r_i - r_0)^2 + \sum_{\text{angles}} k_i^{\text{angle}} (\theta_i - \theta_0)^2 + \sum_{\text{dihedrals}} k_i^{\text{dihedral}} \left[1 + \cos (n_i \phi_i + \delta_i) \right] + \sum_i \sum_{j \neq i} 4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \sum_i \sum_{j \neq i} q_i q_j \epsilon r_{ij}
\]
Potential Energy Function of Biopolymer

- Simple, fixed algebraic form for every type of interaction.
- Variable parameters depend on types of atoms involved.

\[U(\vec{R}) = \sum_{\text{bonds}} k_i^{\text{bond}} (r_i - r_0)^2 + \sum_{\text{angles}} k_i^{\text{angle}} (\theta_i - \theta_0)^2 + \sum_{\text{dihedrals}} k_i^{\text{dihe}} [1 + \cos(n_i \phi_i + \delta_i)] + \sum_{i \neq j} 4\varepsilon_{ij} \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 + \sum_{i \neq j} \frac{q_i q_j}{r_{ij}} \]

From physics
Large is no problem. But …

Molecular dynamics simulation of alpha-hemolysin with about 300,000 atoms

NCSA machine room
Biomolecular Timescale and Timestep Limits

Timestep Steps

<table>
<thead>
<tr>
<th>Time Unit</th>
<th>Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>10^{15}</td>
</tr>
<tr>
<td>milliseconds</td>
<td>10^{12}</td>
</tr>
<tr>
<td>microseconds</td>
<td>10^{9} (year)</td>
</tr>
<tr>
<td>nanoseconds</td>
<td>10^{6} (day)</td>
</tr>
<tr>
<td>picoseconds</td>
<td>10^{3}</td>
</tr>
<tr>
<td>femtoseconds</td>
<td>10^{0}</td>
</tr>
</tbody>
</table>

- **Rotation of buried sidechains**
- **Local denaturations**
- **Allosteric transitions**
- **Hinge bending**
- **Rotation of surface sidechains**
- **Elastic vibrations**
- **Bond stretching**
- **Molecular dynamics timestep**

SPEED LIMIT

$\delta t = 1$ fs
PDB Files

a little information

- Simulations start with a crystal/NMR structure from the Protein Data Bank, in the standard PDB file format.
- PDB files contain standard records for species, tissue, authorship, citations, sequence, secondary structure, etc.
- We only care about the atom records…
 - atom name (N, C, CA)
 - residue name (ALA, HIS)
 - residue id (integer)
 - coordinates (x, y, z)
 - occupancy (0.0 to 1.0)
 - temp. factor (a.k.a. beta)
 - segment id (6PTI)
- No hydrogen atoms!
 (We must add them ourselves.)
PDB File

(available from www.rcsb.org if structure of biopolymer solved)

REMARK FILENAME="bpti19.pdb"
REMARK PROTEINASE INHIBITOR (TRYPSIN) 13-MAY-87 6PTI
REMARK BOVINE PANCREATIC TRYPsin INHIBITOR
REMARK BOVINE (BOS TAURUS) PANCREAS
REMARK A.WLODAWER
REMARK DATE:26-Jun-00 21:34:42 created by user:
ATOM 1 HT1 ARG 1 13.150 -7.331 10.849 1.00 0.00 BPTI
ATOM 2 HT2 ARG 1 11.747 -7.115 11.780 1.00 0.00 BPTI

etc etc etc

ATOM 554 CA GLY 56 15.319 0.828 11.790 1.00 17.33 BPTI
ATOM 555 C GLY 56 16.029 -0.385 12.375 1.00 18.91 BPTI
ATOM 556 OT1 GLY 56 15.443 -1.332 12.929 1.00 21.00 BPTI
ATOM 557 OT2 GLY 56 17.308 -0.138 12.617 1.00 21.95 BPTI
END
PSF Files

atomic properties (mass, charge, type)

- Every atom in the simulation is listed.
- Provides all static atom-specific values:
 - atom name (N, C, CA)
 - atom type (NH1, CT1)
 - residue name (ALA, HIS)
 - residue id (integer)
 - segment id (6PTI)
 - atomic mass (in atomic mass units)
 - partial charge (in electronic charge units)

- What is not in the PSF file?
 - coordinates (dynamic data, initially read from PDB file)
 - velocities (dynamic data, initially from Boltzmann distribution)
 - force field parameters (non-specific, used for many molecules)
Example of PSF File

MASS HS 1.0080 ! thiol hydrogen
MASS C 12.0110 ! carbonyl C, peptide backbone
MASS CA 12.0110 ! aromatic C

!---
AUTOGENERATE ANGLES=TRUE DIHEDRALS=TRUE END
!---
RESIDUE ALA

GROUP
 ATOM N TYPE=NH1 CHARGE= -.4700 END ! |
 ATOM HN TYPE=H CHARGE= .3100 END ! N--HN
 ATOM CA TYPE=CT1 CHARGE= .0700 END ! | HB1
 ATOM HA TYPE=HB CHARGE= .0900 END ! |
GROUP
 ATOM CB TYPE=CT3 CHARGE= -.2700 END ! |
 ATOM HB1 TYPE=HA CHARGE= .0900 END ! | / HA-CA--CB-HB2
 ATOM HB2 TYPE=HA CHARGE= .0900 END ! | O=C
 ATOM HB3 TYPE=HA CHARGE= .0900 END !
GROUP
 ATOM C TYPE=C CHARGE= .5100 END
 ATOM O TYPE=O CHARGE= -.5100 END
!END GROUP

!END GROUP
 BOND CB CA
 BOND N HN
 BOND N CA
 BOND O C
 BOND C CA
 BOND CA HA
 BOND CB HB1
 BOND CB HB2
 BOND CB HB3
 DONOR HN N
 ACCEPTOR O C
END {ALA }
Protein Structure

The twenty amino acids

URL: http://lectures.molgen.mpg.de/ProteinStructure

Introduction to Protein Structure, 2nd ed.
Carl Branden & John Tooze, 1999

Protein Structure and Function,
Greg Petsko & Dagmar Ringe, 2003

Molecular Biology of The Cell
Alberts, Johnson, Lewis, Raff, Roberts, Walter, 2002

non-polar

charged

polar
Preparing Your System for MD Solvation

Biological activity is the result of interactions between molecules and occurs at the interfaces between molecules (protein-protein, protein-DNA, protein-solvent, DNA-solvent, etc).

Why model solvation?
• many biological processes occur in aqueous solution
• solvation effects play a crucial role in determining molecular conformation, electronic properties, binding energies, etc

How to model solvation?
• explicit treatment: solvent molecules are added to the molecular system
• implicit treatment: solvent is modeled as a continuum dielectric or so-called implicit force field
Preparing Your System for MD Solvation

Biological activity is the result of interactions between molecules and occurs at the interfaces between molecules (protein-protein, protein-DNA, protein-solvent, DNA-solvent, etc).

Why model solvation?
• many biological processes occur in aqueous solution
• solvation effects play a crucial role in determining molecular conformation, electronic properties, binding energies, etc

How to model solvation?
• explicit treatment: solvent molecules are added to the molecular system
• implicit treatment: solvent is modeled as a continuum dielectric

mitochondrial bc1 complex
Preparing Your System for MD
Solvation

Biological activity is the result of interactions between molecules and occurs at the interfaces between molecules (protein-protein, protein-DNA, protein-solvent, DNA-solvent, etc).

Why model solvation?
• many biological processes occur in aqueous solution
• solvation effects play a crucial role in determining molecular conformation, electronic properties, binding energies, etc

How to model solvation?
• explicit treatment: solvent molecules are added to the molecular system
• implicit treatment: solvent is modeled as a continuum dielectric

mitochondrial bc1 complex
From the Mountains to the Valleys

how to actually describe a protein

Initial coordinates have bad contacts, causing high energies and forces (due to averaging in observation, crystal packing, or due to difference between theoretical and actual forces)

Minimization finds a nearby local minimum.

Heating and cooling or equilibration at fixed temperature permits biopolymer to escape local minima with

Initial dynamics samples thermally accessible states.
Longer dynamics access other intermediate states; one may apply external forces to access other available states in a more timely manner.
Molecular Dynamics Ensembles

Constant energy, constant number of particles (NE)

Constant energy, constant volume (NVE)

Constant temperature, constant volume (NVT)

Constant temperature, constant pressure (NPT)

Choose the ensemble that best fits your system and start the simulations, but use NE to check on accuracy of the simulation.
NAMD: The Program we will Use

Simulation of large biomolecular systems
2002 Gordon Bell Award for parallel scalability.
Runs at NSF centers, on clusters, and on desktop.
Available for FREE as precompiled binaries; includes source code.
10,000 registered users.

Ankyrin
340K atoms with PME

TeraGrid Phase 2 (NCSA)
Linear scaling

75% efficiency on 256 CPUs

3 s/step

J. Phillips
Ph.D. UIUC
Physics

32 ms

2 4 8 16 32 64 128 256 512

number of processors

time per step (seconds)
Linux Clusters 101

parallel computing on a professor’s salary

Learn to build your own Linux cluster!

Easy to manage

$1000 per processor

92K atoms with PME
(ns simulated per week)
Cutting Corners

cutoffs, PME, rigid bonds, and multiple timesteps

• Nonbonded interactions require order N^2 computer time!
 – Truncating at R_{cutoff} reduces this to order $N \, R_{\text{cutoff}}^3$
 – Particle mesh Ewald (PME) method adds long range electrostatics at order $N \log N$, only minor cost compared to cutoff calculation.

• Can we extend the timestep, and do this work fewer times?
 – Bonds to hydrogen atoms, which require a 1fs timestep, can be held at their equilibrium lengths, allowing 2fs steps.
 – Long range electrostatics forces vary slowly, and may be evaluated less often, such as on every second or third step.

• Coarse Graining
Steps in a Typical MD Simulation

• 1. Prepare molecule
 – Read in pdb and psf file
• 2. Minimization
 – Reconcile observed structure with force field used (T = 0)
• 3. Heating
 – Raise temperature of the system
• 4. Equilibration
 – Ensure system is stable
• 5. Dynamics
 – Simulate under desired conditions (NVE, NpT, etc)
 – Collect your data
• 6. Analysis
 – Evaluate observables (macroscopic level properties)
 – Or relate to single molecule experiments
 – Many tools available in VMD
Example: MD Simulations of the K^+ Channel Protein

Ion channels are membrane-spanning proteins that form a pathway for the flux of inorganic ions across cell membranes.

Potassium channels are a particularly interesting class of ion channels, managing to distinguish with impressive fidelity between K^+ and Na^+ ions while maintaining a very high throughput of K^+ ions when gated.
Setting up the system (1)

- retrieve the PDB (coordinates) file from the Protein Data Bank
- add hydrogen atoms using PSFGEN
- use psf and parameter files to set up the structure
- minimize the protein structure using NAMD2
Simulate the protein in its natural environment: solvated lipid bilayer
Setting up the system (3)
Inserting the protein in the lipid bilayer

Automatic insertion into the lipid bilayer leads to big gaps between the protein and the membrane \Rightarrow long equilibration time required to fill the gaps.
Solution: manually adjust the position of lipids around the protein
The system

Kcsa channel protein (in blue) embedded in a (3:1) POPE/POPG lipid bilayer. Water molecules inside the channel are shown in vdw representation.
RMS deviations for the KcsA protein and its selectivity filter indicate that the protein is stable during the simulation with the selectivity filter the most stable part of the system.

Temperature factors for individual residues in the four monomers of the KcsA channel protein indicate that the most flexible parts of the protein are the N and C terminal ends, residues 52-60 and residues 84-90. Residues 74-80 in the selectivity filter have low temperature factors and are very stable during the simulation.
Simulating the system:
Free MD

Summary of simulations:
• protein/membrane system contains 38,112 atoms, including 5117 water molecules, 100 POPE and 34 POPG lipids, plus K+ counterions
• CHARMM26 forcefield
• periodic boundary conditions, PME electrostatics
• 1 ns equilibration at 310K, NpT
• 2 ns dynamics, NpT

Program: NAMD2

Platform: Cray T3E (Pittsburgh Supercomputer Center)
Simulation of Ion Conduction (here for Kv1.2)

Theoretical and Computational Biophysics Group
Beckman Institute
University of Illinois at Urbana-Champaign
Simulation of Ion Conduction (here for Kv1.2)

Theoretical and Computational Biophysics Group
Beckman Institute
University of Illinois at Urbana-Champaign
Coarse-grained protein-lipid model for simulating lipoprotein assembly

- Lipid model: 12 beads per DPPC lipid

\[V = \sum_{\text{bond}} \frac{1}{2} K_b (b - b_0)^2 + \sum_{\text{l lipid angle}} \frac{1}{2} K_b^{\text{l lipid}} (\cos(\theta_{\text{l lipid}}) - \cos(\theta_0^{\text{l lipid}}))^2 + \sum_{\text{protein angle}} K_\theta^{\text{protein}} (\theta^{\text{protein}} - \theta_0^{\text{protein}})^2 \]

\[+ \sum_{\text{dihedral}} K_\chi (1 + \cos(n\chi - \delta)) + \sum_{m,n} 4\varepsilon_{mn} \left[\left(\frac{\sigma_{mn}}{r_{mn}} \right)^{12} - \left(\frac{\sigma_{mn}}{r_{mn}} \right)^6 \right] + \sum_{m,n} \frac{q_m q_n}{4\pi\varepsilon_0 r_{mn}} \]

- Protein model: Each residue is represented by two CG beads: backbone & side chain
- Dihedral force obtained using an inverse Boltzmann technique (protein backbone only)

Coarse Grained Molecular Dynamics of Lipid Nanodiscs

Full atom representation Coarse-grained representation

Nanodisc Assembly CG MD Simulation

- 10 µs simulation
- Assembly proceeds in two steps:
 - Aggregation of proteins and lipids driven by the hydrophobic effect
 - Optimization of the protein structure driven by increasingly specific protein-protein interactions
- Formation of the generally accepted double-belt model for discoidal HDL
Study of Very Large Systems by Coarse Graining
Satellite Tobacco Mosaic Virus

132,000 atoms of protein, 30,000 atoms of RNA, water, ions
~1,000,000 atoms in total

Coarse-Grained Simulation of Virus Capsid

Each protein unit is represented by 15 beads (~170 atoms per bead)