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Thermal Motion of Ubiquitin from MD
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Thermal Motion of Ubiquitin from MD

Temperature Dependence of Crystal Diffraction (Debye-Waller factor)
Bragg’s law
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But the atom carries out thermal vibrations around equilibrium
position f j
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Thermal Motion of Ubiquitin from MD

Temperature Dependence of Crystal Diffraction (Debye-Waller factor)

One can expand:
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One can carry out the expansion further and show
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Using for the thermal amplitude of the harmonic oscillator
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one obtains Debye-Waller factor
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Equilibrium Properties of Proteins
Energies: kinetic and potential
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Equilibrium Properties of Proteins

Energies: kinetic and potential
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Maxwell Distribution of Atomic Velocities
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Mean Kinetic Energy

Exercise in Statistics

f dv ( ) (’U)
e f du( mo?) exp [_%}
kB T \/7 / m di ) ( _;;3,:;;) exp [—_;;j;;}

= kT \ﬂ f_x dy 1 exp — 1]

Use formula below: (%m’Z)Q) — %kBT

fux dyy™ exp[—y*] = %[‘ (m;l)
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Maxwell Kinetic EnergyDistribution

Second Exercise in Statistics

One-dimensional kinetic energy: € = %m’v;

~ . v,
plex) = p(ruﬂ){;i%. —  pler) = /1/7kpT\/1/e; exp|—er/kpT]
(factor 2 from restriction of integration to positive values)

Distribution of velocities at T=297.8 K

For the total kinetic energy ' Yoo T
(in three dimensions) oo, B
holds then

pler) =

Number of atoms
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The atomic velocities of a
protein establish a thermometer,
but is it accurate?

Temperatur Fluctuations

Maxwell distribution

dP(vn) = cexp(—m 02 [2kpT) dv, (7

VEIOCity Individual kinetic energy e, = muv2 /2
thermometer dP(ex) = (TToea) ™ exp(—en/kpTo) dey (®)
IS Inaccurate _
One can derive
due to the lea) =054 9)
finite size of a () = 3T3/4 (10)
protein! (en) — {ea)® = T5/2 (11)
The distribution of the total kinetic energy Fi,, = 32, %nljil‘?, according to the

central limit theorem, is approximately Gaussian
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The distribution function for the temperature (1" = 2FE};,/3kg) fluctuations
AT = T — T1;is then
P(AT) = cexp[—(AT)*/20%], o = 2T7T%/3N (13)

For 7y — 100K and N — 557, this gives o — 3.6.



Normal Distribution of Temperatures
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Myoglobin

Myoglobin is a small, bright red protein. It is very common in muscle cells, and gives
meat much of its red color. Its job is to store oxygen, for use when muscles are hard at
work. If you look at John Kendrew's PDB file, you will notice that the myoglobin that he
used was taken from sperm whale muscles. As you can imagine, marine whales and
dolphins have a great need for myoglobin, so that they can store extra oxygen for use
in their deep dives undersea.

PDB Molecule of the Month: Myoglobin

Oxygen Bound to Myoglobin

This structure of myoglobin, with the accession code 1mbo,
shows the location of oxygen. The iron atom at the center of
the heme group holds the oxygen molecule tightly. Compare
the two pictures. The first shows only a set of thin tubes to
represent the protein chain, and the oxygen is easily seen.
But when all of the atoms in the protein are shown in the
second picture, the oxygen disappears, buried inside the
protein.So how does the oxygen get in and out, if it is totally
surrounded by protein? In reality, myoglobin (and all other
proteins) are constantly in motion, performing small flexing
and breathing motions. Temporary openings constantly
appear and disappear, allowing oxygen in and out. The
structure in the PDB is merely one snapshot of the protein,
caught when it is in a tightly-closed form. Looking at the
static structure held in the PDB, we must imagine the
dynamic structure that actually exists in nature.The two
pictures above were created with RASMOL. You can create
similar pictures by accessing the PDB file 1mbo, and then
clicking on "View Structure." Try switching between the two
types of pictures shown above, to prove to yourself that the
oxygen is buried in this structure!

PDB Molecule of the Month: Myoglobin




Myogobin, the first protein with known structure

John Cowdery Kendrew

. Nobel Prize in Chemistry .
Diffraction pattern observed Jointly with Max Perutz ~ Struture model at 6 A resolution

Higher resolution
Model:

1) Construct
electron density

map

2) Build model

Myoglobin with heme group

* Myoglobin from PDB
structure 1A6M

e X-ray crystal structure
at 1.00 A resolution.

e Steps seen in RMSD
are due primarily to
tilting of the helix to
the upper right of the
heme in the picture...




Myoglobin Dynamics to Probe Motion of ke

Setup and -
Equilibration o

RMS deviation

* Remove oxygen liganded to Fe

* Minimize 1000 steps, fixing the
C, atoms.

* Heat for 5 ps with Langevin
dynamics at 300 K, fixed C,
atoms.

e Simulate in NVT ensemble for
19 ns, saving coordinates every
ps.

RMS devintion (A%




Obtain “1”” from position distribution
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e Best fit “by eye” is _ D
0=0.528 A. . Fito=0528A

e However: standard
deviation gives
0=0.36 (f=KT/ o"2)
= 319 pN/A; this is
what we use below.
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Obtain diffusion coefficient from
position autocorrelation function

Once we know the i | | |
restoring force, the o e |
diffusion coefficient =
can be obtained from %
the position Zoos-
autocorrelation B | B % =]
function: 0 P 1': 2ept®l 100

(x(t)x(0)) = " exp[— D ft/kpT) D AT = 0321
D =0.0042 A%/10 fs
=0.42 A? /ps.
Compare: D, ., = 0.24 A2 /ps



Position autocorrelation:
underdamped case

The Langevin equation governing underdamped
motion is

i+ bi + w?e = n(t)

The position correlation function is given by

(x(t)z(0)) = (2(0)%)e " [cosQt) + 25sinQ(t)]

Using w2+ b2 /4
m = f/wQ (from F = ma)
v = mb
kpT w?
B = R P
I b

we can solve for D.

Diffusion coefficient from underdamped oscillator
{2 w T

O Correlation function from trajectory

— Fit assuming underdamped oscillator

—0.15F m

0 | 50 | 100
time / 10 fs
Fitting parameters: Q = 0.0426; b =0.0811; w’=
Q2 +b? /4 = 34.59/ps%. D = 0.556 AZ /ps.



Mossbauer line shape function

The lineshape I(w) we are trying to calculate
is given by

I(w) =29 [T gte—@t-3TtGgx, 1) (1)

where G(k,t) is given by

Gk,t) = [ dr [ droe™ %) p(x, t]ro, 0)po(ro)
(2)

Notice that G(k,¢) is just the autocorrelation
function of exp(—ik - r).

Moessbauer Line Shape Function - Sampled
and Matched to Analytical Formula

I(w) using D and f from position correlation
Positions sampled every 10 fs for 100 ps
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