Using MDFF Examples from Modern Research

Klaus Schulten Group - Theoretical and Computational Biophysics Group

NIH Center for Macromolecular Modeling and Bioinformatics

University of Illinois at Urbana-Champaign

A Sampling of TCBG's MDFF Projects

Integrating experimental methods into computational modeling to obtain complete structural models

The Receycling System of the Cell

The ubiquitin proteasome proteolytic pathway

- 1 Substrate tagging by Ubq4
- 2 Ubq4-substrate recognition
- 3 Substrate degradation

Near-atomic model of the 26S proteasome

www.ks.uiuc.edu/~trudack

Functional subunits of the 26S proteasome

Ubiquitin
Recognition
(Rpn10, Rpn13, Rpn1)

Deubiquitylation (Rpn11)

Substrate
Unfolding
(ATPase-ring)

Substrate Degradation $(\alpha\text{-ring}, \beta\text{-ring})$

Deubiquitylation subunit: Rpn11

Complete models are a basic prerequisite to perform MD simulations

Deubiquitylation (Rpn11)

Missing segments

- highly flexible
- ambigous density

Chain V of PDB-ID 4CR2

Combining Rosetta and MDFF

incomplete structural model deposited in the PDB

de novo structure prediction

energy ranking

model filtering

interactive MDFF of cryo-EM data

complete structural model that fits cryo-EM data

Rosetta

Leaver-Fay et al. Methods Enzymol. 2011 Porter et al. PLoS One 2015

VMD/NAMD

Humphrey et al. J. Mol. Graph. 1996 Philips et al. J. Comput. Chem. 2005

Integrating user expertise into de novo structure prediction

Model filtering by secondary structure

Predicted model

Representaive model of the predicted averaged secondary structure pattern for Rpn11's C-terminal tail (purple)

Visual inspection of cryo-EM density

Predicted model to initiate MDFF

Interactive Molecular Dynamics Flexible Fitting

MDFF can be run on Cloud computing for low cost!

Complete model of Rpn11 fitted to density

Quality check by cross-correlations

Incomplete vs. complete model

Low vs. high resolution density model

Red: 3.5 Å cryo-EM model of Rpn11 within the isolated proteasomal lid

Purple: completed Rpn11 model within the 7.7 Å proteasomal cryo-EM density

Isolated lid cryo-EM model

Gabriel Lander / Andreas Martin

PDB-ID 3JCK EMDB-ID 6479

Resolution 3.5 Å

Dambacher et al. eLife 2016

26S proteasome cryo-EM density

Wolfgang Baumeister

EMDB-ID 2594

Resolution 7.7 Å

Unverdorben et al. PNAS 2014

Low vs. high resolution density model

Deubiquitylation (Rpn11)

Functional subunits of the 26S proteasome

Ubiquitin
Recognition
(Rpn10, Rpn13, Rpn1)

Deubiquitylation (Rpn11)

Substrate
Unfolding
(ATPase-ring)

Substrate Degradation $(\alpha\text{-ring}, \beta\text{-ring})$

Ubiquitin recognition by Rpn10

Ubiquitin Recognition (Rpn10)

www.ks.uiuc.edu/~trudack

Zhang*, Vucovic*, Rudack*, Han, Schulten 2016 JPC B (in press)

Ubiquitin Recognition

Ubiquitin recognition by Rpn10

Ubiquitin Recognition (Rpn10)

Ubiquitin recognition and deubiquitylation

Generalized Simulated Annealing – GSAFold

GSAFold NAMD Plugin – Allows ab initio structure prediction

New implementation of GSA on supercomputers allows the conformational search for large flexible regions.

 Amino acid residues connecting Rpn10's UIM with the proteasome are likely to be disordered and stochastic searching algorithms such as GSA can be used to explore their conformational space

Conformational State

 GSAFold coupled to NAMD searches low-energy conformations to be used as starting points for the molecular dynamics studies.

Rafael C. Bernardi Marcelo Melo

Conformation Space of Rpn10 Anchor

Ubiquitin Transport to Deubiquitinase Rpn11

Functional subunits of the 26S proteasome

The Motor of the Proteasome

Resolved nucleotides are needed

3.9 Å Resolution Density of the Human 26S Proteasome

High-resolution Real Space Refinement with MDFF

Advantage:

Positions of bulky side chains can be observed from density

Challenge:

no detailed side chain orientation X-ray structure refinement tools failed in the range of 4-5 Å resolution

Solution:

combining MDFF with monte carlo based backbone and side chain rotamer search algorithms in an iterative manner

The ATPase Motor of the 26S Proteasome

EMDB-ID: 4002

Schweitzer A, Aufderheide A, Rudack T, et al. "The structure of the 26S proteasome at a resolution of 3.9 Å." PNAS 2016 in press.

The Motor Action of protein unfolding

NAMD QM/MM interface

The atomic structure enable detailed investigations of the unfolding process by QM/MM simulations combined with path sampling techniques.

ModelMaker

incomplete protein model

www.ks.uiuc.edu/~trudack

Conclusion

In order to obtain **complete** protein **structures** different **experimental** and **computational** methods need to be **integrated**

Automation is important but **user expertise** is equally important.

Acknowledgments

Theory

Klaus Schulten Ryan McGreevy

Experiment

Wolfgang Baumeister Friedrich Förster Eri Sakata

ModelMaker

Ryan McGreevy

Maximilian Scheurer

Marc Siggel Justin Porter