Molecular Dynamics Flexible Fitting

Ryan McGreevy
Research Programmer

University of Illinois at Urbana-Champaign
NIH Resource for Macromolecular Modeling and Bioinformatics
Molecular Dynamics Flexible Fitting
(Ribosome-bound YidC)

Electron Microscope

EM density map

Match through MD

Supercomputer

APS Synchrotron

Crystallographic structure
Two terms are added to the MD potential

\[U_{total} = U_{MD} + U_{EM} + U_{SS} \]

An external potential derived from the EM map is defined on a grid as

\[U_{EM}(\mathbf{R}) = \sum_j w_j V_{EM}(\mathbf{r}_j) \]

\[V_{EM}(\mathbf{r}) = \begin{cases} \xi \left(1 - \frac{\Phi(\mathbf{r}) - \Phi_{thr}}{\Phi_{max} - \Phi_{thr}} \right) & \text{if } \Phi(\mathbf{r}) \geq \Phi_{thr}, \\ \xi & \text{if } \Phi(\mathbf{r}) < \Phi_{thr}. \end{cases} \]

A mass-weighted force is then applied to each atom

\[f_{iEM} = -\nabla U_{EM}(\mathbf{R}) = -w_i \frac{\partial V_{EM}(\mathbf{r}_i)}{\partial r_i} \]

Secondary structure restraints

Harmonic restraints are applied to preserve secondary structure of proteins and nucleic acids, avoiding “overfitting.”

\[U_{SS} = \sum \ k_\mu (\mu - \mu_0)^2 \]

For proteins, \(\phi \) and \(\psi \) dihedral angles of residues within helices or beta strands are restrained.

For nucleic acids, distance and dihedral restraints are applied to a selected set of base pairs.
Additional Restraints

Cis-peptide and Chirality

Eduard Schreiner, et al. BMC Bioinformatics, 12, 190, 2011

Domain-wise

Eduard Schreiner, et al. BMC Bioinformatics, 12, 190, 2011

Symmetry

Acetyl – CoA Synthase

Harmonic restraints

(strength increasing over simulation for convergence)

B. pumilus cyanide dihydratase
Symmetry restrained MDFF - Test Case 1
Improve quality of fit for low-resolution data

Blue: without symmetry restraints
Red: with symmetry restraints

low-resolution case (8Å)
better structure (lower RMSD)

high-resolution case (4.3Å)
no effect

Archaeal group II chaperonin from *M. maripaludis* (Mm-cpn)
8-fold rotational + 2 fold reflection symmetry
homology model (based on PDB 3LOS) fitted into EM map (EMDB 5140)

Symmetry restrained MDFF - Test Case 2
Prevent “edge distortion effect”

Finite-size Simulation (9 dimers)
helical symmetry

Fitted models of J1 nitrilase from R. rhodocherous

homology model and EM map (EMD 1313) from collaborator T. Sewell, U. of Cape Town

Without Symmetry Restraints
With Symmetry Restraints

Domain restrained MDFF

Use Targeted MD (TMD) feature of NAMD to restrain non-overlapping groups of atoms to maintain rigid domains.

Acetyl CoA Synthase with two domains (red and blue) separately restrained.
MDFF can be run in different environments:

1. **Vacuum**
 - No water molecules
 - Fastest but potentially inaccurate

2. **Explicit Solvent**
 - Explicit atomic detail water molecules
 - Computationally slow and introduces effects of viscous drag

3. **Implicit Solvent**
 - Generalized Born approximation of electrostatics
 - Compromise between speed and accuracy

MDFF Software Suite

- NAMD and VMD used together to run MDFF
- Every NAMD and VMD feature is available in MDFF

Fitting time is dependent on:
- system size
- map and structure quality
- Generally need ~ 1ns or less (much shorter than MD)

Input: MDFF only requires a PDB, PSF, and density map

Output: produces simulation trajectory from which an ensemble of structures can be extracted

http://www.ks.uiuc.edu/Research/mdff/
New MDFF GUI (VMD 1.9.2) makes setting up, running, and analyzing fitting simulations even easier.

- system sizes up to 100 million atoms (viruses, chromatophore)
- maps from 3 to 15 Å
- runs on laptops to petascale computing resources (Blue Waters, Titan)

http://www.ks.uiuc.edu/Research/mdff/
Molecular Dynamics Flexible Fitting - Example

Cryo-EM map of the *E. coli* ribosome at 6.7-Å resolution

Obtaining Initial Structures

1. X-ray crystallography or NMR structures

2. Refine structures from low-res X-ray data with xMDFF

3. Homology or ab initio modeling with Modeller, Rosetta, MUFOld (Ci-VSP, YidC, Holotranslocon)

Rosetta structure prediction to fill **missing pieces** and MDFF to filter, refine and validate candidate structures
Combining structure prediction with the user’s expertise to interpret densities

ModelMaker Interactive Modeling

* incomplete structural model deposited in the PDB
 - *de novo* structure prediction
 - energy ranking
 - model filtering
 - interactive MDFF of cryo-EM data

* complete structural model that fits cryo-EM data

Rosetta

Leaver-Fay *et al.* Methods Enzymol. 2011

VMD/NAMD

Humphrey *et al.* J. Mol. Graph. 1996
Interactive Modeling with MDFF GUI

- Apply forces to manually manipulate structure into the density
- Useful for difficult to fit structures with large conformational changes

New MDFF GUI in VMD 1.9.2
Set up and run interactive (or traditional) MDFF/xMDFF simulations

Analyze interactive simulations in real-time
Importance of Checking Initial Structure

<0.05% non-proline bonds found in the cis conformation natively, however:

- The frequency of non-proline cis-peptide bond errors has been increasing for low-resolution
- These errors can hide issues in other parts of the structure

Wrong chirality, cis-peptide bonds, and torsion angle outliers may arise during modeling.

VMD provides tools to check, visualize, and correct these errors.

These tools, together with MD force fields, produce models with good structural geometry.

TorsionPlot Plugin new in VMD 1.9.3
Analyzing MDFF Model Quality 0: Known Structures

MDFF has been validated against a wide-ranging set of known high-resolution structures.
Analyzing MDFF Model Quality 1: Structure Checking

Eduard Schreiner, et al. BMC Bioinformatics, 12, 190, 2011

- Wrong chirality, cis-peptide bonds, and torsion angle outliers may arise during modeling

- VMD provides tools to check, visualize, and correct these errors

- These tools, together with MD force fields, produce models with good structural geometry

<table>
<thead>
<tr>
<th>PDB ID</th>
<th>Molprobity initial (published)</th>
<th>Molprobity final</th>
</tr>
</thead>
<tbody>
<tr>
<td>1AV1</td>
<td>3.72</td>
<td>1.94</td>
</tr>
<tr>
<td>1YE1</td>
<td>2.68</td>
<td>1.89</td>
</tr>
<tr>
<td>1JL4</td>
<td>3.24</td>
<td>1.47</td>
</tr>
<tr>
<td>1AOS</td>
<td>3.40</td>
<td>2.45</td>
</tr>
<tr>
<td>1XDV</td>
<td>2.87</td>
<td>2.01</td>
</tr>
<tr>
<td>1YI5</td>
<td>3.08</td>
<td>1.73</td>
</tr>
</tbody>
</table>
Analyzing MDFF Model Quality 2: **Global Cross Correlation**

Global CC is not always a good indicator of fit

CC = 0.728 \[\text{RMSD(\text{reference})} = 6.23 \, \text{Å} \]

CC = 0.723 \[\text{RMSD(\text{reference})} = 2.30 \, \text{Å} \]

Analyzing MDFF Model Quality 2: Local Cross Correlation

- Local cross correlation indicates quality of fit of specific regions across the entire structure
- New parallel CPU and GPU algorithms provide significant speed up (25-50x speedup over Chimera), allowing for fast computation along fitting trajectories

Structure is colored by cross correlation, along with Timeline analysis of the trajectory

(a) Good Fit
(b) Intermediate Fit
(c) Bad Fit

-.309 .9031

Analyzing MDFF Model Quality 3: Local Resolution Analysis

Local resolution of the experimental density from ResMap for error analysis and simulation parameterization.

Root Mean Square Fluctuation (RMSF) correlates highly with local resolution.

Analyzing MDFF Model Quality 3: Local Resolution Analysis

Local resolution of the experimental density from ResMap for error analysis and simulation parameterization

Root Mean Square Fluctuation (RMSF) correlates highly with local resolution

Cascade and **direct** fitting structure to one half map and calculating the cross correlation to the other

<table>
<thead>
<tr>
<th>Fit to</th>
<th>CC w.r.t. Halfmap I</th>
<th>CC w.r.t. Halfmap II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halfmap I</td>
<td>0.715 (0.686)</td>
<td>0.714 (0.685)</td>
</tr>
<tr>
<td>Halfmap II</td>
<td>0.716 (0.688)</td>
<td>0.716 (0.688)</td>
</tr>
</tbody>
</table>

CC of reference structure w.r.t. each half map was 0.719

Analyzing MDFF Model Quality 5: MD post-processing
Stability of structure during equilibration

Deviation from fitted structure after equilibration is within map resolution (~3Å)

Equilibration of cascade MDFF structure

B-galactosidase (3.2 Å)

Ribosome-bound structure predicted by MDFF from cryo-EM map ~ 7.5 Å

Analyzing MDFF Model Quality 6: Agreement with Experiment

Ribosome + Fo-c+YidC complex

Crystal Structure (3WVF) 3.2 Å

Nascent chain confirmed also by chemical cross-linking, gel filtration chromatography and mass spectroscopy.

Beckmann, Schulten et al.
eLife; 3:e03035 (2014)
MDFF Has a Wide Range of Applications

Over 60 reported MDFF applications:

• By intramural Researchers:

• By extramural Researchers:

MDFF/xMDFF Methodological Articles:
Acknowledgements and Further Information

Find out more about MDFF including:

- software downloads
- publications
- documentation
- tutorials

 http://www.ks.uiuc.edu/Research/mdff/

 http://www.ks.uiuc.edu/Research/mdff/vmdbeta/

Abhi Singharoy

Ivan Teo

Till Rudack
Molecular Dynamics Flexible Fitting
Advanced Techniques
Ryan McGreevy
Research Programmer

University of Illinois at Urbana-Champaign
NIH Resource for Macromolecular Modeling and Bioinformatics
MDFF for high-resolution cryo-EM

- MDFF made in a time of lower resolution (~8-15 Å) EM maps
- High-resolution (< 5 Å) now more easily obtainable
- Structure can become trapped in steep wells of high-resolution potential during MDFF
Cascade MDFF for **high-resolution** cryo-EM:
Successively higher resolution maps

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Global correlation</th>
<th>RMSD (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>0.732</td>
<td>-</td>
</tr>
<tr>
<td>Direct</td>
<td>0.699</td>
<td>12.41</td>
</tr>
<tr>
<td>Cascade</td>
<td>0.724</td>
<td>2.30</td>
</tr>
</tbody>
</table>

Singharoy, Teo, McGreevy, et. al. eLife, 2016

Resolution Exchange MDFF for high-resolution cryo-EM

- multiple maps blurred to varying resolution, like cMDFF
- independent parallel replicas (like Replica Exchange)
- each replica fits to a different map
- periodically exchange maps between replicas
- currently random exchange vs. parallel tempering which requires sufficient potential overlap of the energy distributions between neighboring replicas
xMDFF: MDFF for low-resolution x-ray crystallography

Diffraction data

Initial model

Amplitude from X-ray diffraction intensity

Phase from search model

Model-Phased Maps

X-ray electron density using PHENIX

Electron density

R-value > tolerance

Convergence test

MDFF fitting to the density with NAMD grid forces

R-value < tolerance

Refined Model

Final model

Final

Initial

Target

xMDFF: MDFF for low-resolution x-ray crystallography

- Periodically generate new 2mFo-DFc maps using phenix.maps

- “Difference” maps amplify the regions of the map in which portions of the true model are missing

- Can use any phenix.maps parameters, e.g., “Feature-enhanced maps” which reduce model bias and noise
Refinement statistics

<table>
<thead>
<tr>
<th>PDB ID</th>
<th>Molprobity</th>
<th>R-work</th>
<th>R-free</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>initial</td>
<td>final</td>
<td>initial</td>
</tr>
<tr>
<td>1AV1</td>
<td>3.72</td>
<td>1.94</td>
<td>0.38</td>
</tr>
<tr>
<td>1YE1</td>
<td>2.68</td>
<td>1.89</td>
<td>0.25</td>
</tr>
<tr>
<td>1JL4</td>
<td>3.24</td>
<td>1.47</td>
<td>0.36</td>
</tr>
<tr>
<td>1AOS</td>
<td>3.40</td>
<td>2.45</td>
<td>0.21</td>
</tr>
<tr>
<td>1XDV</td>
<td>2.87</td>
<td>2.01</td>
<td>0.39</td>
</tr>
<tr>
<td>1YI5</td>
<td>3.08</td>
<td>1.73</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Structures

- 1AV1, 4 Å
- 1YE1, 4.5 Å
- 1JL4, 4.3 Å
- 1AOS, 4.2 Å
- 1YI5, 4.2 Å
- 1XDV, 4.1 Å

- Better R-work and R-free values than published before.
- Close R-work and R-free implies less over-fitting.
- Improved geometry implied by low Molprobity score.

xMDFF Solves Voltage Sensor Protein Structure at 4 Å Resolution

Collaboration with E. Perozo (U. Chicago)

- xMDFF reproduces helix position and arginine alignment.
- Refined model confirms electrophysiological measurements.

Search model preparation

Largest xMDFF structure has 2252 amino acids

Search model used from MUFOLD structure prediction software
(Dong Xu U. Missouri)

Refinement statistics

<table>
<thead>
<tr>
<th></th>
<th>initial</th>
<th>final</th>
</tr>
</thead>
<tbody>
<tr>
<td>R:</td>
<td>0.45</td>
<td>0.26</td>
</tr>
<tr>
<td>R-free:</td>
<td>0.47</td>
<td>0.28</td>
</tr>
<tr>
<td>score:</td>
<td>3.07</td>
<td>2.19</td>
</tr>
<tr>
<td>helix RMSD:</td>
<td>4.65</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Qufei Li, et. al. Nature Structural & Molecular Biology, 21:244-252, 2014
xMDFF for Abiological Materials
Cyanostar (2Å)

xMDFF-Phenix
(dual occupancy of CS shown in black and orange)

Phenix-only