Force Fields for MD simulations

- Topology/parameter files
- Where do the numbers an MD code uses come from?
- How to make topology files for ligands, cofactors, special amino acids, ...
- How to obtain/develop missing parameters.
- QM and QM/MM force fields/potential energy descriptions used for molecular simulations.

The Potential Energy Function

$$U(\vec{R}) = \underbrace{\sum_{bonds} k_i^{bond} (r_i - r_0)^2}_{U_{bond}} + \underbrace{\sum_{angles} k_i^{angle} (\theta_i - \theta_0)^2}_{U_{angle}} + \underbrace{\sum_{i \ dihedrals} k_i^{dihe} [1 + \cos(n_i \phi_i + \delta_i)] + }_{U_{dihedral}} + \underbrace{\sum_{i \ j \neq i} \Delta \epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right]}_{U_{nonbond}} + \sum_{i \ j \neq i} \frac{q_i q_j}{\epsilon r_{ij}}$$

 U_{bond} = oscillations about the equilibrium bond length U_{angle} = oscillations of 3 atoms about an equilibrium bond angle $U_{dihedral}$ = torsional rotation of 4 atoms about a central bond $U_{nonbond}$ = non-bonded energy terms (electrostatics and Lenard-Jones)

Energy Terms Described in the CHARMm Force Field

Classical Molecular Dynamics $\mathbf{r}(t+\delta t) = \mathbf{r}(t) + \mathbf{v}(t)\delta t$ $\mathbf{v}(t + \delta t) = \mathbf{v}(t) + \mathbf{a}(t)\delta t$ $\boldsymbol{a}(t) = \boldsymbol{F}(t) / \boldsymbol{m}$ $\boldsymbol{F} = -\frac{d}{d\boldsymbol{r}}U(\boldsymbol{r})$

Classical Molecular Dynamics

Classical Molecular Dynamics

Classical Molecular Dynamics

Bond definitions, atom types, atom names, parameters,

What is a Force Field?

In molecular dynamics a molecule is described as a series of charged points (atoms) linked by springs (bonds).

To describe the time evolution of bond lengths, bond angles and torsions, also the non-bonding van der Waals and elecrostatic interactions between atoms, one uses a force field. The force field is a collection of equations and associated constants designed to reproduce molecular geometry and selected properties of tested structures.

Energy Functions

 U_{bond} = oscillations about the equilibrium bond length U_{angle} = oscillations of 3 atoms about an equilibrium bond angle $U_{dihedral}$ = torsional rotation of 4 atoms about a central bond $U_{nonbond}$ = non-bonded energy terms (electrostatics and Lenard-Jones)

Parameter optimization of the CHARMM Force Field

Based on the protocol established by

Alexander D. MacKerell, Jr, U. Maryland

See references: www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm

Especially Sanibel Conference 2003, JCC v21, 86,105 (2000)

Interactions between bonded atoms

$$V_{bond} = K_b (b - b_o)^2$$

$$V_{angle} = K_{\theta} (\theta - \theta_o)^2$$

 $V_{bond} = K_b (b - b_o)^2$

Chemical type	K _{bond}	b _o
C-C	100 kcal/mole/Å 2	1.5 Å
C=C	200 kcal/mole/Å 2	1.3 Å
C=C	400 kcal/mole/Å 2	1.2 Å

Bond angles and *improper* terms have similar quadratic forms, but with softer spring constants. The force constants can be obtained from vibrational analysis of the molecule (experimentally or theoretically).

Dihedral Potential

$$V_{dihedral} = K_{\phi}(1 + \cos(n\phi - \delta))$$

 $\delta = 0^{\circ}$

Nonbonded Parameters

$$\sum_{nonbonded} \frac{q_i q_j}{4\pi D r_{ij}} + \varepsilon_{ij} \left[\left(\frac{R_{\min,ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{R_{\min,ij}}{r_{ij}} \right)^6 \right]$$

- q_i: partial atomic charge
- D: dielectric constant
- ε: Lennard-Jones (LJ, vdW) well-depth

$$R_{\min i,j} = R_{\min i} + R_{\min j}$$

$$\varepsilon_{i,j} = SQRT(\varepsilon_i * \varepsilon_j)$$

Note that the effect is long range.

Charge Fitting Strategy

CHARMM- Mulliken*

AMBER(ESP/RESP)

Partial atomic charges

*Modifications based on interactions with TIP3 water

van der Waals interaction

$$\varepsilon_{ij} \left[\left(\frac{R_{\min,ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{R_{\min,ij}}{r_{ij}} \right)^{6} \right]$$

CHARMM Potential Function

File Format/Structure

- The structure of a pdb file
- The structure of a psf file
- The topology file
- The parameter file
- Connection to potential energy terms

		<u>S</u> .	<u>tr</u>	<u>uc[.]</u>	ture	01	fa	PDB	fi	e	
index	re name	sna	me	chain	resid		×	y z		segr	name
АТОМ	× 22	N	ALA	в 3	-4.	073	-7.587	-2.708	1.00	0.00	BH
ATOM	23	HN	ALA	в 3	-3.	813	-6.675	-3.125	1.00	0.00	BH
ATOM	24	CA	ALA	в 3	-4.	615	-7.557	-1.309	1.00	0.00	BH
ATOM	25	HA	ALA	в 3	-4.	323	-8.453	-0.704	1.00	0.00	BH
ATOM	26	СВ	ALA	в 3	-4.	137	-6.277	-0.676	1.00	0.00	BH
ATOM	27	HB1	ALA	в 3	-3.	128	-5.950	-0.907	1.00	0.00	BH
ATOM	28	HB2	ALA	в 3	-4.	724	-5.439	-1.015	1.00	0.00	BH
ATOM	29	HB3	ALA	в 3	-4.	360	-6.338	0.393	1.00	0.00	BH
ATOM	30	С	ALA	в 3	-6.	187	-7.538	-1.357	1.00	0.00	BH
ATOM	31	0	ALA	в 3	-6.	854	-6.553	-1.264	1.00	0.00	BH
ATOM	32	Ν	ALA	В 4	-6.	697	-8.715	-1.643	1.00	0.00	BH
ATOM	33	HN	ALA	В 4	-6.	023	-9.463	-1.751	1.00	0.00	BH
ATOM	34	CA	ALA	В 4	-8.	105	-9.096	-1.934	1.00	0.00	BH
ATOM	35	HA	ALA	В 4	-8.	287	-8.878	-3.003	1.00	0.00	BH
ATOM	36	CB	ALA	В 4	-8.	214 -	-10.604	-1.704	1.00	0.00	BH
ATOM	37	HB1	ALA	В 4	-7.	493 -	-11.205	-2.379	1.00	0.00	BH
ATOM	38	HB2	ALA	В 4	-8.	016 -	-10.861	-0.665	1.00	0.00	BH
ATOM	39	HB3	ALA	В 4	-9.	245 -	-10.914	-1.986	1.00	0.00	BH
ATOM	40	С	ALA	В 4	-9.	226	-8.438	-1.091	1.00	0.00	BH
ATOM	41	0	ALA	B 4	-10.	207	-7.958	-1.667	1.00	0.00	BH
00000	0000000 10	0000	00000 20	000000	000000000 30	0000C 4	0000000 10	000000000 50	000000	0000000 60	0000000 70

>>> It is an ascii, fixed-format file <<<

"No connectivity information"

VMD Atom Selection Commands

(name CA CB) and (resid 1 to 4) and (segname BH) protein and resname LYS ARG GLU ASP water and within 5 of (protein and resid 62 and name CA) water and within 3 of (protein and name 0 and z < 10)

Checking file structures

• PDB file

- Topology file
- PSF file
- Parameter file

Parameter Optimization Strategies

Check if it has been parameterized by somebody else

Literature

Google

Minimal optimization

By analogy (i.e. direct transfer of known parameters) Quick, starting point - dihedrals??

Maximal optimization

Time-consuming Requires appropriate experimental and target data

Choice based on goal of the calculations

Minimal

database screening

NMR/X-ray structure determination

Maximal

free energy calculations, mechanistic studies, subtle environmental effects

Roadmap Charmm27 Optimization*

*based on MacKerell, JCC v21, 86,105 (2000)

Getting Started

- Identify previously parameterized compounds
- Access topology information assign atom types, connectivity, and charges annotate changes

CHARMM topology (parameter files)

top_all22_model.inp (par_all22_prot.inp)
top_all22_prot.inp (par_all22_prot.inp)
top_all22_sugar.inp (par_all22_sugar.inp)
top_all27_lipid.rtf (par_all27_lipid.prm)
top_all27_na_lipid.rtf (par_all27_na_lipid.prm)
top_all27_prot_lipid.rtf (par_all27_prot_lipid.prm)
top_all27_prot_na.rtf (par_all27_prot_lipid.prm)
top_all27_prot_na.rtf (par_all27_prot_na.prm)
top_all27_prot_na.rtf (par_all27_prot_na.prm)
top_all27_prot_na.rtf (par_all27_prot_na.prm)

NA and lipid force fields have new LJ parameters for the alkanes, representing increased optimization of the protein alkane parameters. Tests have shown that these are compatible (e.g. in protein-nucleic acid simulations). For new systems is suggested that the new LJ parameters be used. Note that only the LJ parameters were changed; the internal parameters are identical

www.pharmacy.umaryland.edu/faculty/amackere/force_fields.htm

Break Desired Compound into 3 Smaller Ones

When creating a covalent link between model compounds move the charge on the deleted H into the carbon to maintain integer charge (i.e. methyl (q_c =-0.27, q_H =0.09) to methylene (q_c =-0.18, q_H =0.09)

From top_all22_model.inp

RESI	PHEN		0.0	00	!	phenol,	adm	jr.	
GROUE	?								
ATOM	CG	CA	-0.2	115	!				
ATOM	HG	HP	0.1	115	!		HD1	HE1	
GROUE	?				!		Ι	I	
ATOM	CD1	CA	-0.2	115	!		CD1-	CE1	
ATOM	HD1	HP	0.1	115	!		//	\\	
GROUE	?				!	HGC	CG	CZ	2ОН
ATOM	CD2	CA	-0.2	115	!		\	/	
ATOM	HD2	HP	0.3	115	!		CD2=	==CE2	H
GROUE	?				!		Ι	I	
ATOM	CE1	CA	-0.2	115	!		HD2	HE2	
ATOM	HE1	HP	0.3	115					
GROUI	?								
ATOM	CE2	CA	-0.2	115					
ATOM	HE2	HP	0.3	115					
GROUI	?								
ATOM	CZ	CA	0.3	110					
ATOM	OH	OH1	-0.!	540					
ATOM	HH	н	0.4	430					
BOND	CD2 C	CG CE1	CD1	CZ	CE2	CG HG C	CD1 H	ID1	
BOND	CD2 H	ID2 CE1	. HE	1 CE	12 H	IE2 CZ OF	HO H	нн	
DOUBI	LE CD1	CG CE	2 CI	52	CZ	CE1			

Top_all22_model.inp contains all protein model compounds. Lipid, nucleic acid and carbohydate model compounds are in the full topology files.

HG will ultimately be deleted. Therefore, move HG (hydrogen) charge into CG, such that the CG charge becomes 0.00 in the final compound.

\ HH

> Use remaining charges/atom types without any changes.

Do the same with indole

Comparison of atom names (upper) and atom types (lower)

Creation of topology for central model compound

Start with alanine dipeptide. Note use of new aliphatic LJ parameters and, importantly, atom types.

NR1 from histidine unprotonated ring nitrogen. Charge (very bad) initially set to yield unit charge for the group.

Note use of large group to allow flexibility in charge optimization.

			NH ₂
RESI CYG 0.00			
GROUP			
ATOM N NH1	-0.47 !	Protein-	S CH ₂ CH
ATOM HN H	0.31 !	HN-N 1 1 1	
ATOM CA CT1	0.07 !	HB1 backbone	
АТОМ НА НВ	0.09 !		
GROUP	!	HA-CACBSG	
ATOM CB CT2	-0.11 !		Ö
ATOM HB1 HA	0.09 !	HB2	•
АТОМ НВ2 НА	0.09 !	O=C	
ATOM SG S	-0.07 !		
ATOM HG1 HS	0.16 !	$\lambda_{\rm ext}$	
GROUP	!		HG1 deleted from CYS and
ATOM CDG CC	0.55 !		
ATOM OEL O	-0.55 !		the charge was moved to
GROUP	0 1 0	! HNZG	
ATOM LGG CTZ	-0.18		SG (-0.23 +0.16=0.07) so
ATOM HGIG HA	0.09		
GROUP	0.09	HAG-CAGCBGCGGCDG=OE1	that the SG charge
ATOM CBG CT2	-0.18		
ATOM HB1G HA	0.09	HB2G HG2G	becomes 0.07 in final
ATOM HB2G HA	0.09	! 01G=CG	compound and the group
GROUP		!	compound and the group
ATOM CG CD	0.75	! 02G-H02G	romaine neutral
ATOM O1G OB	-0.55		remains neutral
ATOM O2G OH1	-0.61		
ATOM HO2G H	0.44		
ATOM CAG CT1	-0.12		Changes annotated!
ATOM HAG HB	0.09		Changes annotated:
ATOM NG NH3	-0.62		
ATOM HN1G HC	0.31		
ATOM HN2G HC	0.31		
GROUP			
ATOM C C	0.51		
ATOM O O	-0.51		

Partial Atomic Charge Determination Method Dependent Choices

1. RESP: HF/6-31G overestimates dipole moments (AMBER)

2. Interaction based optimization (CHARMM)

For a particular force field do NOT change the QM level of theory. This is necessary to maintain consistency with the remainder of the force field.

Starting charges?? Mulliken population analysis Analogy comparison

peptide bond methyl imidazole (N-N=C)?

Final charges (methyl, vary q_c to maintain integer charge, $q_H = 0.09$) interactions with water (HF/6-31G*, monohydrates!)

Model compound 1-water interaction energies/geometries

Iı	nteraction	Energies	Interact	Interaction Distances (A)					
	Ab initio	Analogy	Optimized	Ab initio	Analogy	gy Optimized			
1) O2HOH	-6.12	-6.56	-6.04	2.06	1.76	1.78			
2) N3-HOHH	-7.27	-7.19	-7.19	2.12	1.91	1.89			
3) N4HOH	-5.22	-1.16	-5.30	2.33	2.30	2.06			
4) C5-HOHH	-3.86	-3.04	-3.69	2.46	2.51	2.44			
Energetic stat	istical ana	lysis							
Ave. Differe	nce	1.13	0.06						
RMS Differe	ence	1.75	0.09						
Dipole Mome	nts (debey	/e)							
	5.69	4.89	6.00						

Ab initio interaction energies scaled by 1.16.

MacKerell: Sanibel Conference 2003

Comparison of analogy and optimized charges

Name	Туре	Analogy	Optimized
C1	CT3	-0.27	-0.27
H11	HA3	0.09	0.09
H12	HA3	0.09	0.09
H13	HA3	0.09	0.09
C2	С	0.51	0.58
O2	0	-0.51	-0.50
N3	NH1	-0.47	-0.32
H3	Н	0.31	0.33
N4	NR1	0.16	-0.31
C5	CEL1	-0.15	-0.25
H51	HEL1	0.15	0.29
C6	CT3	-0.27	-0.09
H61	HA	0.09	0.09
H62	HA	0.09	0.09
H63	HA	0.09	0.09

Summary of Parameterization

- LJ (VDW) parameters normally direct transfer from available parameters is adequate, but should be tested by comparison to heats of vaporization, density, partial molar volumes, crystal simulations,.... (MacKerell JCC 2002).
- 2. Bond, angle, dihedral, UB and improper force constants

Vibrational spectra- Frequencies Conformational Energetics -Relative energies Potential energy surfaces

Vibrations are generally used to optimize the bond, angle, UB and improper FCs while conformational energies are used for the dihedral FCs.

Vibrational Spectra of Model Compound 1 from MP2/6-31G* QM calculations

#	Freq	Assign	%	Assign	%	Assign	%	#	Freq	Assign	%	Assign	%
1	62	tC2N	64	tN3N	46			21	1446	rNH	35		
2	133	tC1H3	50	tN3N	18	tC2N	17	22	1447	rC5H	47	sC-N	18
3	148	tC1H3	46	tC6H3	25			23	1527	dCH3	77		
4	154	dC2NN	44	dN3NC	28	dN4CC	16	24	1532	dCH3	88		
5	205	tC6H3	59	tN4C	22	tN3N	21	25	1599	dCH3a'	50	dCH3a	17
6	333	tN4C	73	tC2N	22			26	1610	dCH3a	71	dCH3a'	24
7	361	dC1CN	45	dN4CC	21	dN3NC	16	27	1612	dCH3a'	30		
8	446	rC=0	32	dN4CC	20			28	1613	dCH3a	70	dCH3a'	23
9	568	wNH	77					29	1622	dCH3a'	57	dCH3a	19
10	586	dC1CN	21	dC2NN	20	rC=0	18	30	1782	sN=C	71		
11	618	wC=O	83	wNH	28	tC2N	-26	31	1901	sC=0	78		
12	649	rC=0	27	dN4CC	19			32	3250	sCH3	76	sC5-H	21
13	922	sC1-C	62					33	3258	sC5-H	78	sCH3	21
14	940	wC5H	80					34	3280	sCH3	99		
15	1031	rCH3'	33	sC5-C	31			35	3330	sCH3a	75	sCH3a'	25
16	1114	rCH3	66					36	3372	sCH3a'	100		
17	1139	rCH3'	76	wC=O	20			37	3377	sCH3a'	73	sCH3a	24
18	1157	rCH3	61	wC5H	21			38	3403	sCH3a	99		
19	1234	sC5-C	33	sN-N	32			39	3688	sN-H	100		
20	1269	sN-N	36	rCH3'	18								

Frequencies in cm⁻¹. Assignments and % are the modes and there respective percents contributing to each vibration.

Dihedral optimization based on QM potential energy surfaces (HF/6-31G* or MP2/6-31G*).

Potential energy surfaces on compounds with multiple rotatable bonds

- 1) Full geometry optimization
- 2) Constrain n-1 dihedrals to minimum energy values or trans conformation
- 3) Sample selected dihedral surface
- 4) Repeat for all rotatable bonds dihedrals
- 5) Repeat 2-5 using alternate minima if deemed appropriate

QM development of force field parameters for retinal

Used for rhodopsin and bacteriorhodopsin simulations

Retinal Proteins -- Rhodopsins

Unconventioanl chemistry

Coupling of electronic excitation and conformational change in bR

Isomerization Barriers in retinal

DFT/6-31G**

TABLE 2 The parameter set B used for the torsional potentials of the main polyene chain of the retinal Schiff base

$\phi_{ m i}$	k_i (kcal/mol)*	n _i	δ_i (deg)
$C_5 = C_6 - C_7 = C_8$	11.24	2.0	180.00
$C_6 - C_7 = C_8 - C_9$	39.98	2.0	180.00
$C_7 = C_8 - C_9 = C_{10}$	17.03	2.0	180.00
$C_8 - C_9 = C_{10} - C_{11}$	37.28	2.0	180.00
$C_9 = C_{10} - C_{11} = C_{12}$	22.50	2.0	180.00
$C_{10} - C_{11} = C_{12} - C_{13}$	35.08	2.0	180.00
$C_{11} = C_{12} - C_{13} = C_{14}$	28.30	2.0	180.00
$C_{12} - C_{13} = C_{14} - C_{15}$	29.46	2.0	180.00
$C_{13} = C_{14} - C_{15} = N_{16}$	30.43	2.0	180.00
$C_{14} - C_{15} = N_{16} - C_{\epsilon}$	28.76	2.0	180.00

Tajkhorshid et al., 1999.

* $E_i^{\text{dihedral}} = (1/2)k_i[1 + \cos(n_i\varphi_i - \delta_i)].$

Retinal Charge Distribution

QM/MM derived partial atomic charges

Classical Retinal Isomerization in Rhodopsin

Twist Propagation

7000

QM/MM calculations

Ab Initio QM/MM Excited State MD Simulation

Quantum mechanical (QM) treatment of the chromophore, and force field (MM) treatment of the embedding protein

QM/MM calculation of ATP hydrolysis

ATP hydrolysis in β_{TP}

Modeling the *active*-complex: today's tutorial

VMD to Attach the substrate GLN to the active site of hisH

CYS & GLN

Creating a new topology file entry

RESI CYG	0.00						
ATOM N	NHI	-0 47		1.1		Dratain	
ATOM HN	LI	0.31	1	HN-N		Protein-	/
ATOM CA	CTT 1	0.07	1	III III	1	backbone	CH
ATOM HA	HR	0.09	1	1 1		ouencome	
GROUP	1112	0.05	i	HA-CACF	SG		1875 67
ATOM CB	CT2	-0.11	1				
ATOM HB1	HA	0.09	i	H	32		
ATOM HB2	HA	0.09	1	0=0			
ATOM SG	S	-0.07	1		1		
ATOM HO	1 HS	0.16	1	1.14	1		
GROUP		100000	1			\ \	110
ATOM CDG	CC.	0.55	1			X	п
ATOM OE1	0	-0.55	1			1	the
GROUP			1	HN2G		X	trie
ATOM CGG	CT2	-0.18	1			N.	Cr.
ATOM HG1	G HÀ	0.09	1	HN1G-NG	HBIG	HG1G\	ou
ATOM HG2	G HA	0.09	1		1		the
GROUP			1	HAG-CAG-	-CBG-	-CGGCDG=OE1	ula
ATOM CBG	CT2	-0.18	1	- 1 -	1	1	0.0
ATOM HB1	G HA	0.09	1	- U-	HB2G	HG2G	0.0
ATOM HB2	G HÀ	0.09	1	OlG=CG			the
GROUP			1	1			uit
ATOM CG	CD	0.75	1	02G-	-HO2G		
ATOM 010	OB	-0.55					
ATOM 020	G OH1	-0.61					Ch
ATOM HO2	G H	0.44					U.
ATOM CAG	G CT1	-0.12					
ATOM HAG	; HB	0.09					
ATOM NG	NH3	-0.62					
ATOM HN1	G HC	0.31					
ATOM HN2	G HC	0.31					
GROUP							
ATOM C	C	0.51					
ATOM O	0	-0.51					

HG1 deleted from CYS and the charge was moved to SG (-0.23 +0.16=0.07) so that the SG charge becomes 0.07 in final compound and the group remains neutral

 NH_2

CH₂

COOH

Changes annotated!

Creating new parameters

EGNDS							
V(bond) = Kb(b - b0) **2							
!Kb: kcal/mole/A**2							
1b0: A							
	DIR	EDRAL	s				
latom type Kb b0	1						
! Modified for CYG residue after 6-31G* geometry optimization	IV(dihed	ral)	= Kchi(1 + cos(n)	(chi)	- delta))
a do zeo.000 1.7810 i ALLON ALI BOL 10/		a		2010111			the set start of the
AUGUES	1 Ke	hi: k	ca1/n	ole			
1	1 82	mult	iplic	ity			
<pre>!V(angle) = Ktheta(Theta - Theta0)**2</pre>	! de	Ita:	degre	es			
	1						
<pre>!V(Urey-Bradley) = Knb(S - SO)**2</pre>	lat	om ty	pes		Kchi	n	delta
!Ktheta kcal/mole/rad**2	CC	S	CT2	CT1	0.2400	1	180.00
Theta0 degrees	CC	8	CT2	CT1	0.3700	з	0.00
<pre>!Kub: kcal/mole/A**2 (Urey-Bradley)</pre>	HA	CT2	8	CC	0.2800	3	0.00
ISU: A	CT2	S	CC	CT2	2.05	2	180.00
latom types Ktheta Theta0 Kub SD	CT2	8	CC	0	2.05	2	180.00
i i i i i i i i i i i i i i i i i i i							
! Modified for CYG residue after 6-31G* geometry optimization							
CT2 5 CC 34,000 100,2000 ALLOW ALI BUL ION							
CT2 CC S 50.000 114.5000 ! ALLOW ALL SUL ION							
0 CO B 75.000 122.2000 ALLOW ALI BUL ION							

Semi-empirical Parameter Estimation Using SPARTAN

Main Spartan Window

You build a part of CYG

Be careful with the dihedral drive section!