
Fast Molecular Electrostatics Algorithms on GPUs

David J. Hardy∗ John E. Stone∗ Kirby L. Vandivort∗

David Gohara† Christopher Rodrigues‡ Klaus Schulten§

30th June, 2010

In this chapter, we present GPU kernels for calculating electrostatic po-
tential maps, which is of practical importance to modeling biomolecules.
Calculations on a structured grid containing a large amount of fine-grained
data parallelism make this problem especially well-suited to GPU comput-
ing and a worthwhile case study. We discuss in detail the effective use of the
hardware memory subsystems, kernel loop optimizations, and approaches to
regularize the computational work performed by the GPU, all of which are
important techniques for achieving high performance.1

1 Introduction, Problem Statement, and Context

The GPU kernels discussed here form the basis for the high performance
electrostatics algorithms used in the popular software packages VMD [1]
and APBS [2].

VMD (Visual Molecular Dynamics) is a popular software system designed
for displaying, animating, and analyzing large biomolecular systems. More
than 33,000 users have registered and downloaded the most recent VMD
version 1.8.7. Due to its versatility and user-extensibility, VMD is also

∗Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801
†Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis

University School of Medicine, St. Louis, MO 63104
‡Electrical and Computer Engineering, University of Illinois at Urbana-Champaign,

Urbana, IL 61801
§Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
1This work was supported by the National Institutes of Health, under grant

P41-RR05969.

1

Figure 1: An early success in applying GPUs to biomolecular modeling involved rapid
calculation of electrostatic fields used to place ions in simulated structures. The satellite
tobacco mosaic virus model contains hundreds of ions (individual atoms shown in yellow
and purple) that must be correctly placed so that subsequent simulations yield correct
results [3]. c©2009 Association for Computing Machinery, Inc. Reprinted by permission [4].

capable of displaying other large data sets, such as sequencing data, quantum
chemistry simulation data, and volumetric data. While VMD is designed
to run on a diverse range of hardware — laptops, desktops, clusters, and
supercomputers — it is primarily used as a scientific workstation application
for interactive 3D visualization and analysis. For computations that run
too long for interactive use, VMD can also be used in a batch mode to
render movies for later use. A motivation for using GPU acceleration in
VMD is to make slow batch-mode jobs fast enough for interactive use, which
can drastically improve the productivity of scientific investigations. With
CUDA-enabled GPUs widely available in desktop PCs, such acceleration can
have broad impact on the VMD user community. To date, multiple aspects

2

of VMD have been accelerated with CUDA, including electrostatic potential
calculation, ion placement, molecular orbital calculation and display, and
imaging of gas migration pathways in proteins.

APBS (Adaptive Poisson-Boltzmann Solver) is a software package for eval-
uating the electrostatic properties of nanoscale biomolecular systems. The
Poisson-Boltzmann Equation (PBE) provides a popular continuum model
for describing electrostatic interactions between molecular solutes. The nu-
merical solution of the PBE is important for molecular simulations modeled
with implicit solvent (that is, the atoms of the water molecules are not ex-
plicitly represented) and permits the use of solvent having different ionic
strengths. APBS can be used with molecular dynamics simulation software
and also has an interface to allow execution from VMD.

The calculation of electrostatic potential maps is important for the study
of the structure and function of biomolecules. Electrostatics algorithms
play an important role in the model building, visualization, and analysis
of biomolecular simulations, as well as being an important component in
solving the PBE. One often used application of electrostatic potential maps,
illustrated in Figure 1, is the placement of ions in preparation for molecular
dynamics simulation [3].

2 Core Method

Summing the electrostatic contributions from a collection of charged parti-
cles onto a grid of points is inherently data parallel when decomposed over
the grid points. Optimized kernels have demonstrated single GPU speeds
ranging from 20 to 100 times faster than a conventional CPU core.

We discuss GPU kernels for three different models of the electrostatic poten-
tial calculation: a multiple Debye-Hückel (MDH) kernel [5], a simple direct
Coulomb summation kernel [3], and a cutoff pair potential kernel [6, 7]. The
mathematical formulation can be expressed similarly for each of these mod-
els, where the electrostatic potential Vi located at position ri of a uniform
3D lattice of grid points indexed by i is calculated as the sum over N atoms,

Vi =
N∑

j=1

C
qj

|ri − rj |
S(|ri − rj |), (1)

in which atom j has position rj and charge qj , and C is a constant. The

3

function S depends on the model; the differences in the models are significant
enough as to require a completely different approach in each case to obtain
good performance with GPU acceleration.

3 Algorithms, Implementations, and Evaluations

The algorithms that follow are presented in their order of difficulty for ob-
taining good GPU performance.

Multiple Debye-Hückel Electrostatics

The Multiple Debye-Hückel (MDH) method (used by APBS) calculates
Equation (1) on just the faces of the 3D lattice. For this model, S is re-
ferred to as a “screening function” and has the form

S(r) =
e−κ(r−σj)

1 + κσj
,

where κ is constant and σj is the “size” parameter for the jth atom. Since
the interactions computed for MDH are more computationally intensive than
for the subsequent kernels discussed, less effort is required to make the MDH
kernel compute-bound to achieve good GPU performance.

The atom coordinates, charges, and size parameters are stored in arrays.
The grid point positions for the points on the faces of the 3D lattice are
also stored in an array. The sequential C implementation utilizes a doubly
nested loop, with the outer loop over the grid point positions. For each grid
point, we loop over the particles to sum each contribution to the potential.

The calculation is made data parallel by decomposing the work over the grid
points. A GPU implementation uses a simple port of the C implementation,
implicitly representing the outer loop over grid points as the work done for
each thread. The arithmetic intensity of the MDH method can be increased
significantly by using the GPU’s fast on-chip shared memory for reuse of
atom data among threads within the same thread block. Each thread block
collectively loads and processes blocks of particle data in the fast on-chip
memory, reducing demand for global memory bandwidth by a factor equal to
the number of threads in the thread block. For thread blocks of 64 threads
or more, this enables the kernel to become arithmetic-bound. A CUDA
version of the MDH kernel is shown in Fig. 2.

4

global
void mdh(f loat ∗ ax , f loat ∗ ay , f loat ∗ az ,

f loat ∗ charge , f loat ∗ s i z e , f loat ∗ val ,
f loat ∗ gx , f loat ∗ gy , f loat ∗ gz ,
f loat pre1 , f loat xkappa , int natoms) {

extern shared f loat smem [] ;
int i g r i d = (blockIdx . x ∗ blockDim . x) + threadIdx . x ;
int l s i z e = blockDim . x ;
int l i d = threadIdx . x ;
f loat l gx = gx [i g r i d] ;
f loat l gy = gy [i g r i d] ;
f loat l g z = gz [i g r i d] ;
f loat v = 0 .0 f ;
for (int jatom = 0 ; jatom < natoms ; jatom+=l s i z e) {

syncthreads () ;
i f ((jatom + l i d) < natoms) {

smem[l i d] = ax [jatom + l i d] ;
smem[l i d + l s i z e] = ay [jatom + l i d] ;
smem[l i d + 2∗ l s i z e] = az [jatom + l i d] ;
smem[l i d + 3∗ l s i z e] = charge [jatom + l i d] ;
smem[l i d + 4∗ l s i z e] = s i z e [jatom + l i d] ;

}
syncthreads () ;

i f ((jatom+l s i z e) > natoms) l s i z e = natoms − jatom ;
for (int i =0; i< l s i z e ; i++) {

f loat dx = lgx − smem[i] ;
f loat dy = lgy − smem[i + l s i z e] ;
f loat dz = l g z − smem[i + 2∗ l s i z e] ;
f loat d i s t = sqrtf (dx∗dx + dy∗dy + dz∗dz) ;
v += smem[i + 3∗ l s i z e] ∗

expf(−xkappa ∗ (d i s t − smem[i + 4∗ l s i z e])) /
(1 . 0 f + xkappa ∗ smem[i + 4∗ l s i z e]) ∗ d i s t) ;

}
}
va l [i g r i d] = pre1 ∗ v ;

}

Figure 2: In the optimized MDH kernel, each thread block collectively loads and processes
blocks of atom data in fast on-chip local memory. Green colored program syntax denotes
CUDA-specific declarations, types, functions, or built-in variables.

5

Once the algorithm is arithmetic-bound, the GPU performance advantage
vs. the original CPU code is primarily determined by the efficiency of the
specific arithmetic operations contained in the kernel. The GPU provides
high performance machine instructions for most floating point arithmetic,
so the performance gain vs. the CPU for arithmetic-bound problems tends
to be substantial, but particularly for kernels (like the MDH one given) that
use special functions such as exp() which cost only a few GPU machine
instructions and tens of clock cycles, rather than the tens of instructions
and potentially hundreds of clock cycles that CPU implementations often
require. The arithmetic-bound GPU MDH kernel provides a roughly two
order of magnitude performance gain over the original C-based CPU imple-
mentation.

Direct Coulomb Summation

The direct Coulomb summation has S(r) ≡ 1, calculating for every grid
point in the 3D lattice the sum of the q/r electrostatic contribution from
each particle. The number of grid points is proportional to the number of
atoms N for a typical use case, giving O(N2) computational complexity,
although most applications require a much finer lattice resolution than the
average inter-particle spacing between atoms, leading to around 10 to 100
times more grid points than atoms. A sequential algorithm would have a
doubly nested loop, with the outer loop over grid points and the inner loop
over the atoms. The calculation is made data parallel by decomposing the
work over the grid points. A simplest GPU implementation might assign
each thread to calculate all contributions to a single grid point, in which
case the outer loop is expressed implicitly through the parallelization, while
the inner loop over atoms is explicitly executed by each thread. However,
because the computational intensity of calculating each interaction is so
much less than for the MDH kernel, more effort in kernel development is
required to obtain high performance on the GPU.

Due to its simplicity, direct Coulomb summation provides an excellent prob-
lem for investigating the performance characteristics of the GPU hardware.
We have developed and refined a collection of different kernels in an effort
to achieve the best possible performance [3]. The particle data x/y/z/q
(three coordinates and charge) is optimally stored using the float4 type.
Since the particle data is read-only and each particle is to be used by all
threads simultaneously, the particles are ideally stored in the GPU constant

6

CUDA Parallel Decomposition

Padding to full blocks optimizes
global memory performance by
guaranteeing coalescing

1-D or 2-D grid of thread blocks

0,0 0,1

1,0 1,1

…

… …

…

…

1-D, 2-D, or 3-D
computational domain

1-D, 2-D, or 3-D
thread blockA 3-D lattice can be decomposed

into coarse 2-D slices, each
computed by launching a kernel on
a GPU. Multiple GPUs can be used

to compute slices concurrently.

Figure 3: Each kernel call for direct Coulomb summation operates on a 2D slice of the 3D
lattice.

memory. The limited size of constant memory (just 64 KB with a small part
of the upper portion used by the CUDA runtime libraries) means that we
are able to store just up to 4,000 particles. In practice, this is sufficient to
adequately amortize the cost of executing a kernel on the GPU. We decom-
pose the 3D lattice into 2D slices, as illustrated in Figure 3, with threads
assigned to calculate the points for a given slice. The computation proceeds
with multiple GPU kernel calls: for each 2D slice of the lattice, we first
zero out its GPU memory buffer, then loop over the particles by filling the
constant cache with the next (up to) 4,000 particles, invoke the GPU kernel
to sum the electrostatic contributions to the slice, and, when finished with
the loop over particles, copy the slice to the CPU.

The CUDA thread blocks are assigned to rectangular tiles of grid points.
Special cases at the edges of the lattice are avoided by padding the GPU
memory buffer for each slice so that it is evenly divisible by the tile size.
The padded parts of the calculation are simply discarded after copying the
slice back to the CPU. Overall GPU throughput is improved by doing the
additional calculations and eliminating the need for conditionals to test for
the array boundary.

A simple direct Coulomb summation kernel might calculate a single grid
point per thread. Each thread uses its thread and block indices to determine
the spatial position of the grid point. The kernel loops over the particles
stored in the constant memory cache, calculating the square of the distance

7

constant float4 atominfo [4 0 0 0] ; // 64kB const memory

global void dcscudas imple (int numatoms , f loat gr idspac ing ,
f loat ∗ energygr id , f loat zp lane) {

unsigned int xindex = blockIdx . x ∗ blockDim . x + threadIdx . x ;
unsigned int yindex = blockIdx . y ∗ blockDim . y + threadIdx . y ;
unsigned int outaddr = gridDim . x ∗ blockDim . x ∗ yindex + xindex ;

// Star t g l oba l memory read ear ly , execut ion cont inues
// un t i l the f i r s t r e f e r e n c e o f the curenergy va r i ab l e
// causes hardware to wait f o r read to complete .
f loat curenergy = energygr id [outaddr] ;

f loat coorx = gr id spac ing ∗ xindex ;
f loat coory = gr id spac ing ∗ yindex ;
f loat energyva l =0.0 f ;
for (int atomid=0; atomid<numatoms ; atomid++) {

f loat dx = coorx − atominfo [atomid] . x ;
f loat dy = coory − atominfo [atomid] . y ;
f loat r 1 = rsqrtf (dx∗dx + dy∗dy + atominfo [atomid] . z) ;
energyva l += atominfo [atomid] .w ∗ r 1 ;

}
energygr id [outaddr] = curenergy + energyva l ;

}

Figure 4: A basic direct Coulomb summation GPU kernel. Atom coordinates are stored in
the x and y members of the float4 atominfo array elements, with the squared Z distance
component from each atom to the current potential map slice stored in the z member,
and the partial charge stored in the w member. Green colored program syntax denotes
CUDA-specific declarations, types, functions, or built-in variables.

between the particle and grid point, followed by a reciprocal square root
function accelerated by the GPU special function unit. Figure 4 shows part
of this simple CUDA kernel.

The GPU performance is sensitive to maintaining coalesced memory reads
and writes of the grid point potentials. Each kernel invocation accumulates
contributions from another set of atoms, requiring that the previously stored
values be read and summed with the contributions from the new set of atoms
before writing the result. Memory coalescing on earlier GPU architectures
(G80 and GT200) required that a half-warp of (16) threads access an aligned,
consecutive array of floats. For a 2D slice, each half-warp-size of threads is
assigned to consecutive grid points in the x-dimension. Figure 4 shows the

8

read of the previous value (curenergy) into a register being initiated at the
beginning of the kernel call, even though this previous value is not needed
until the very last sum, in order to better overlap the computation with the
memory access. Memory coalescing on the Fermi architecture requires access
across the full warp of (32) threads. However, the performance penalty for
using the earlier half-warp access is mitigated by the Fermi L1 cache.

Two different optimizations together result in more than doubling the num-
ber of interactions evaluated per second. The first optimization, shown to
be of lesser benefit for GPU computation than for CPU computation, de-
creases arithmetic within the kernel loop by exploiting the decomposition
of the 3D lattice into slices. With planar slices taken perpendicular to the
z-axis, the jth atom has the same ∆zij = zi−zj distance to every grid point
i on that slice. When buffering the particle data to send to the constant
cache memory, the CPU replaces zj by (∆zij)2, which removes a subtraction
and a multiplication from each iteration of the kernel loop. Benchmarking
shows a slight reduction in FLOPS on the GPU while slightly increasing the
number of particle–grid interactions evaluated per second [3].

The second optimization increases the ratio of arithmetic operations to mem-
ory references by calculating multiple grid points per thread, with interme-
diate results stored in registers. We effectively unroll the implicit outer loop
over the grid points by a constant UNROLLFACTOR, reusing each atom
j read from constant memory multiple times. Unrolling in the x-dimension
offers an additional reduction in arithmetic operations, with the yi’s iden-
tical for the UNROLLFACTOR grid points permitting just one necessary
calculation of (yi − yj)2 + (∆zij)2 per thread. The unrolled grid points,
rather than arranged consecutively, must skip by the half-warp size in order
to maintain coalesced memory reads and writes. A code fragment demon-
strating the loop unrolling optimization is shown in Figure 5, illustrated by
using UNROLLFACTOR = 8.

Loop unrolling optimizations like the one shown here can effectively am-
plify memory bandwidth by moving costly memory reads into registers,
ultimately trading away some amount of parallelism available in the com-
putation. In this case, we reduce the number of thread blocks that will
read each atom j from constant memory by a factor of UNROLLFAC-
TOR. Accordingly, the thread block tile size along the x-dimension becomes
UNROLLFACTOR × HALFWARPSIZE, which also increases the amount
of data padding that might be needed along the x-dimension, and the regis-
ter use-count per thread expands by almost a factor of UNROLLFACTOR.

9

constant float4 atominfo [4 0 0 0] ; // 64kB const memory

global void dcscudaopt (int numatoms , f loat gr idspac ing ,
f loat ∗ energygr id) {

unsigned int xindex = blockIdx . x ∗ blockDim . x ∗ 8 + threadIdx . x ;
unsigned int yindex = blockIdx . y ∗ blockDim . y + threadIdx . y ;
unsigned int outaddr = gridDim . x ∗ blockDim . x ∗ 8 ∗ yindex + xindex ;
f loat coory = gr id spac ing ∗ yindex ;
f loat coorx = gr id spac ing ∗ xindex ;
f loat energyvalx1 =0.0 f ;
// source code abr idged f o r b r ev i ty
f loat energyvalx8 =0.0 f ;
f loat g r i d s p a c i n g c o a l e s c e = gr id spac ing ∗ BLOCKSIZEX;
for (int atomid=0; atomid<numatoms ; atomid++) {

f loat dy = coory − atominfo [atomid] . y ;
f loat dyz2 = (dy ∗ dy) + atominfo [atomid] . z ;

f loat dx1 = coorx − atominfo [atomid] . x ;
f loat dx2 = dx1 + g r i d s p a c i n g c o a l e s c e ;
// source code abr idged f o r b r ev i ty
f loat dx8 = dx7 + g r i d s p a c i n g c o a l e s c e ;

energyvalx1 += atominfo [atomid] .w ∗ rsqrtf (dx1∗dx1 + dyz2) ;
// source code abr idged f o r b r ev i ty
energyvalx8 += atominfo [atomid] .w ∗ rsqrtf (dx8∗dx8 + dyz2) ;

}

energygr id [outaddr] += energyvalx1 ;
ene rgygr id [outaddr+1∗BLOCKSIZEX] += energyvalx2 ;
// source code abr idged f o r b r ev i ty
energygr id [outaddr+7∗BLOCKSIZEX] += energyvalx8 ;

}

Figure 5: Code optimizations for the direct Coulomb summation GPU kernel, using
UNROLLFACTOR = 8. The organization of the float4 atominfo array is the same
as for Fig. 4. Green colored program syntax denotes CUDA-specific declarations, types,
functions, or built-in variables.

A schematic for the optimized GPU implementation is presented in Fig-
ure 6. The increased register pressure caused by unrolling can also decrease
the SM occupancy that permits co-scheduling multiple thread blocks (fast
context switching between the ready-to-execute warps is used to hide mem-
ory transfer latencies). The choice of unrolling factor must balance these

10

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Direct Coulomb Summation on GPU

Global Memory

Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

GPUConstant Memory

Host

Atomic
Coordinates

Charges

Threads compute
up to 8 potentials,

skipping by half-warps

Thread blocks:
64-256 threads

Grid of thread blocks

Lattice padding

Figure 6: Illustration of optimized direct Coulomb summation GPU kernel.

considerations; for the direct Coulomb summation, the optimal UNROLL-
FACTOR is shown to be 8 for both the G80 and GT200 architectures [3].

The decomposition of the 3D lattice into 2D slices also makes it easy to sup-
port multiple GPUs. A round-robin scheduling of the slices to the available
GPU devices works well for devices having equal capability, with bench-
marks showing near-perfect scaling up to four GPUs [3].

Short-Range Cutoff Electrostatics

The quadratic computational complexity of the direct Coulomb summation
makes its use impractical for larger systems. Choosing a “switching” func-
tion S that is zero beyond a fixed cutoff distance produces computational
work that increases linearly in the number of particles. For molecular mod-
eling applications, the switching function is typically chosen to be a smooth
piecewise-defined polynomial. A cutoff pair potential is often used as part of
a more sophisticated method to approximate the full Coulomb interaction
with O(N) or O(N log N) computational work [7].

A sequential algorithm for calculating a cutoff pair potential might loop over
the atoms. For each atom, it is relatively easy to determine the surrounding

11

sphere (or the enclosing cube) of grid points that are within the cutoff dis-
tance rc. The inner loop over these grid points will first test to make sure
that the distance to the atom is less than the cutoff distance and will then
sum the resulting interaction to the grid point potential. We always test
the square of the distance against r2

c to avoid evaluating unnecessary square
roots. This algorithm is efficient in avoiding the wasteful testing of particle–
grid distances beyond the cutoff. However, disorganized memory access can
still negatively impact the performance. Good locality of reference in up-
dating the grid potentials can be maintained by performing a spatial sorting
of the atoms. Since the density of biomolecules is fairly uniform, or is at
least bounded, the spatial sorting is easily done by hashing the atoms into
a 3D array of fixed-size bins.

Adapting the sequential algorithm to the GPU will cause output conflicts
from multiple threads, where uncoordinated concurrent memory writes from
the threads are likely to produce unpredictable results. Although modern
GPUs support atomic updates to global memory, this access is slower than a
standard global write and much slower if there is contention between threads.
The output conflicts are best eliminated by recasting the scatter memory
access patterns into gather memory access patterns. Interchanging the loops
produces a gather memory access pattern well-suited to the GPU: for each
grid point, loop over the “neighborhood” of all nearby bins that are not
beyond the cutoff distance from the grid point.

For GPU computation, each thread will be assigned to calculate the poten-
tial for at least one grid point. The bin neighborhood will need to surround
not just the grid point(s) for the thread, but the region of grid points des-
ignated to each thread block, as depicted in Figure 7. An innermost loop
over the atoms in a bin evaluates the particle–grid interaction if the pairwise
distance is within the cutoff. The performance degrading impact of branch
divergence, due to the conditional test of the pairwise distance within the
cutoff, is improved if the threads in a warp are calculating potentials at grid
points clustered together in space, making it more likely for the threads in
the warp to collectively pass or fail the test condition.

Our initial effort to calculate a cutoff pair potential on the GPU adopted the
direct Coulomb summation technique of storing the atom data in the GPU
constant memory [3], giving rise to a decomposition with coarse granularity.
Use of constant memory for the atoms requires repeated kernel calls, each
designed to calculate the potentials on a cubic region of grid points, but
this region has to be large enough to provide a sufficient amount of work

12

Figure 7: Cubic region of grid points and surrounding neighborhood of atom bins. Use
of small bins allows construction of a neighborhood that more tightly fits to the spherical
volume defined by the cutoff distance. c©2008 Association for Computing Machinery, Inc.
Reprinted by permission [6].

to the GPU. The CPU performs a spatial hashing of the atoms into large
bins designed to form a tight-fitting neighborhood around the region of grid
points, extending beyond each edge of the region by the length of the cutoff
distance. Optimizations include the construction of thread blocks to arrange
each half-warp of threads into the tightest possible clusters (of 4×2×2 = 16
grid points) to reduce the effects of branch divergence. The loop-unrolling
optimizations were applied to keep the half-warp clusters together. Best
efforts yielded speedup factors of no more than 10 due to the excessive
number of failed pairwise distance tests resulting from the coarse spatial
hashing.

Redesign of the GPU algorithm and data structures to use a decomposition
of finer granularity, with smaller bins of atoms, ultimately resulted in more
than doubling the performance over our initial effort. The CPU performs
spatial hashing of atoms into bins, and then copies the bins to the GPU main

13

Figure 8: Data access patterns of a CUDA grid and thread block for different potential
summation implementations. The darkest shade of gray shows the subregion calculated
by a single thread block, the medium gray shows the volume calculated by one kernel
invocation (or, in the case of direct summation, a set of kernel invocations), and the light
gray shows the data needed for calculating each thread block. c©2008 Association for
Computing Machinery, Inc. Reprinted by permission [6].

14

int t i d ; // my thread ID
f loat coorx , coory , coorz ; // g r id po int coo rd ina t e s
// . . . i n i t i a l i z a t i o n s . . .
for (nbr id = 0 ; nbr id < NbrListLen ; nbr id++) {

int ib = myBinIndex . x + NbrList [nbr id] . x ;
int jb = myBinIndex . y + NbrList [nbr id] . y ;
int kb = myBinIndex . z + NbrList [nbr id] . z ;

// e i t h e r c l i p (ib , jb , kb) to the 3D array o f b ins or
// wrap around edges , depending on boundary cond i t i on s

// thread block caches bin (ib , jb , kb) in to shared memory
syncthreads () ;

i f (t i d < bindepth) {
f loat4 ∗bin = b i n g l oba l

+ (((kb∗yBinDim + jb)∗xBinDim + ib)∗ bindepth) ;
b in shared [t i d] = bin [t i d] ;

}
syncthreads () ;

for (n = 0 ; n < bindepth ; n++) {
f loat q = bin shared [n] .w; // the charge
i f (0 . f == q) break ; // zero means no more atoms in bin
f loat rx = bin shared [n] . x − coorx ;
f loat rz = bin shared [n] . z − coorz ;
f loat rxrz2 = rx∗ rx + rz ∗ rz ;
i f (rxrz2 >= cu t o f f 2) continue ; // c l i p to c y l i nd e r
f loat ry = bin shared [n] . y − coory ;
f loat r2 = ry∗ ry + rxrz2 ;
i f (r2 < cu t o f f 2) {

s = SF(r2) ; // implementation−de f ined func t i on
energy0 += q∗ rsqrtf (r2)∗ s ;

}
ry −= BLOCK DIM Y ∗ g r id spac ing ; // un r o l l in y
r2 = ry∗ ry + rxrz2 ;
i f (r2 < cu t o f f 2) {

s = SF(r2) ; // implementation−de f ined func t i on
energy1 += q∗ rsqrtf (r2)∗ s ;

}
// . . . subsequent un r o l l i n g along y−dimension . . .
}

}

Figure 9: Inner loops of cutoff summation kernel. Green colored program syntax denotes
CUDA-specific declarations, types, functions, or built-in variables.

15

memory. The thread blocks are assigned to calculate potentials for small
cubic regions of grid points. Figure 7 gives a 2D schematic of the cubic region
of grid points and its surrounding neighborhood of atom bins. Reducing the
size of the cubic region of potentials and the volume of atom bins, from
those used by the coarse granularity approach, produces a much tighter
neighborhood of bins that ultimately results in a much greater success rate
for the pairwise distance conditional test. Comparing the two algorithmic
approaches by measuring the ratio of the volume of the rc-sphere to the
volume of the enclosed cover of atoms, the success rate of the conditional
test increases from about 6.5% for the coarse granularity approach to over
33% for the finer granularity approach. Figure 8 illustrates the different
CUDA data access patterns between the direct Coulomb summation and
the two different approaches to the cutoff pair potential.

In the finer granularity approach, the threads collectively stream each bin
in their neighborhood of bins to the GPU shared memory cache and then
loop over the particles stored in the current cached bin to conditionally
evaluate particle interactions within the cutoff distance. Indexing the bins
as a 3D array of cubes allows the “spherical” neighborhood of bins to be
precomputed as offsets from a central bin. These offsets are stored in the
GPU constant memory cache and accessed optimally at near-register speed,
since each consecutive offset value is read in unison by the thread block.
Furthermore, there are no bank conflicts reading from the shared memory
cache, since the particle data are read in unison by the thread block.

Coalesced reads and writes significantly reduce the penalty for global mem-
ory access. The smallest block size of 128 bytes for global memory coalescing
determines a smallest bin depth of 8, with (8 atoms per bin) × (4 coordi-
nates, x/y/z/q, per atom) × (4 bytes per coordinate) = (128 bytes per bin).
The bin side length is determined by the density of a system of particles
and the expected bin-fill ratio: binlength = (binfill × bindepth/density)1/3.
Cubic regions of 8 × 8 × 8 = 512 grid points are assigned to each thread
block. The thread blocks themselves are of size 8× 2× 8 to use an unrolling
factor of 4 in the y-direction, which serves to amortize the cost of caching
each bin to shared memory while maximizing reuse of each particle. A code
fragment for the loop over the bin neighborhood and the innermost loop
over the atoms is shown in Figure 9.

The grid potentials calculated by a thread block are, unlike the direct
Coulomb summation kernel, accumulated in a single kernel call, which elimi-
nates the need to read partial sums into registers. The potentials of an entire

16

cubic region are written to global memory after completing the loop over
the bin neighborhood. To achieve coalesced memory writes, the ordering
of each cubic region is transposed to make the memory layout contiguous
for the entire region. Upon completion of the GPU kernel calls, the CPU
transposes each cubic region of potentials (skipping over the padding) into
the 3D lattice row-major ordering.

Although fixing the bin depth to 8 particles optimizes global memory access,
it creates a practical limit on the bin side length. Even though the density
for a given molecular systems is fairly uniform, it is possible for localized
clustering of atoms to overfill a bin unless the bin-fill ratio is chosen to be
quite small, say 1/4 ≤ binfill ≤ 1/2. These cases are instead handled by
assigning any extra particles to be calculated asynchronously by the CPU
concurrently with the GPU [6, 7]. The use of the CPU to regularize work
for the GPU permits larger bin lengths that have a higher average fill, in
practice using binfill = 3/4, resulting in improved performance as long as
the CPU finishes its computation before the GPU does. Multiple GPUs
have also been employed by decomposing the 3D lattice of grid points into
slabs of cubic regions of grid points, with the slabs scheduled in parallel to
the GPUs.

4 Final Evaluation

Performance benchmarks were run on a quiescent test platform with no
windowing system, using single cores of a 2.6 GHz Intel Core 2 Extreme
QX6700 quad-core CPU, as well as a 2.6GHz Intel Xeon X5550 quad-core
CPU, both running 64-bit Red Hat Enterprise Linux version 4 update 6. The
CPU code was compiled using the Intel C/C++ Compiler (ICC) version 9.0.
GPU benchmarks were performed using the NVIDIA CUDA programming
toolkit version 3.0 running on several generations of NVIDIA GPUs.

Multiple Debye-Hückel (MDH) Electrostatics. The performance of
the MDH kernel was benchmarked on CPUs, GPUs, and other accelerators,
from multiple vendors, using OpenCL 1.0. When compared to the original
serial X5550 SSE CPU code, the performance increase for an IBM Cell blade
(using float16) is 5.2× faster, and the AMD Radeon 5870 and NVIDIA
GeForce GTX 285 GPUs are 42× faster. With further platform-specific
tuning, each of these platforms could undoubtedly achieve even higher per-

17

formance. Table 1 summarizes the performance for OpenCL implementa-
tions of the MDH kernel using the standard OpenCL math routines. Ta-
ble 2 contains results for two of the GPUs, using the fast, reduced precision
device-native versions of the OpenCL math routines. The greatly improved
AMD Radeon 5870 results shown in Table 2 clearly demonstrate the po-
tential benefits of using the OpenCL device-native math routines in cases
when precision requirements allow it. The CUDA results using device-native
math routines on the GeForce GTX 480 demonstrate that well written GPU
kernels can perform very well in both the CUDA or OpenCL programming
languages.

Device Runtime Speedup Speedup
(sec) vs. QX6700 vs. X5550

CPU Intel QX6700 SSE 7.15 1.00 0.78
CPU Intel X5550 SSE 5.59 1.27 1.00
OpenCL IBM Cell QS21 1.07 6.68 5.22
OpenCL AMD Radeon 5870 0.134 53.3 41.7
OpenCL NVIDIA GeForce GTX 280 0.133 53.7 42.0
OpenCL NVIDIA Tesla C2050 0.075 95.3 74.0
OpenCL NVIDIA GeForce GTX 480 0.058 123.3 96.4

Table 1: Multiple Debye-Hückel performance results using standard OpenCL math rou-
tines sqrt() and exp().

Device Runtime Speedup Speedup
(sec) vs. QX6700 vs. X5550

OpenCL AMD Radeon 5870 0.046 155.4 121.5
OpenCL NVIDIA GeForce GTX 480 0.043 166.3 130.0
CUDA NVIDIA GeForce GTX 480 0.040 178.7 139.7

Table 2: Multiple Debye-Hückel performance results using the fast device-native OpenCL
math routines native sqrt() and native exp(), or the associated device-native CUDA
math routines. The reduced precision native OpenCL math routines provide a factor of 2.9
performance increase for the AMD Radeon 5870, and a factor of 1.3 performance increase
for the NVIDIA GeForce GTX 480, respectively.

Direct Coulomb Summation (DCS). The performance results in Ta-
ble 3 compare the performance levels achieved by highly tuned CPU kernels
using SSE instructions versus CUDA GPU kernels, all implemented in the
C language. It is worth examining the reason for the very minimal increase

18

in performance for the DCS kernels on the Fermi-based GeForce GTX 480
GPU as compared with the GT200-based Tesla C1060, given the signif-
icant increase in overall arithmetic performance typically associated with
the Fermi-based GPUs. The reason for the rather limited increase in perfor-
mance is due to the DCS kernel’s performance being bound by the execution
rate for the reciprocal square root routine rsqrtf(). Although the Fermi
GPUs are generally capable of outperforming GT200 GPUs by a factor of
two on most floating point arithmetic, the performance of the special func-
tion units that execute the machine instructions that implement rsqrtf(),
sin(), cos(), and exp2f() is roughly the same as the GT200 generation
of GPUs; although the effective operations per-clock per-multiprocessor for
Fermi GPUs is double that of GT200 GPUs, the total number of multipro-
cessors on the device is half that of the GT200 GPUs, leading to overall
DCS performance that is only slightly better than break-even with that of
GT200 GPUs. Multi-GPU performance measurements were obtained by de-
composing the 3-D lattice into 2-D planar slices that are then dynamically
assigned to individual GPUs. Each GPU is managed by an associated CPU
thread provided by the multi-GPU framework implemented in VMD [1].

Device Atom evals Speedup Speedup GFLOPS
per second vs. vs.
(billions) QX6700 X5550

CPU Intel QX6700 SSE 0.89 1.0 0.65 5.3
CPU Intel X5500 SSE 1.36 1.5 1.0 8.2
CUDA GeForce 8800 GTX 39.5 44.4 29.0 291
CUDA Tesla C1060 70.1 78.8 51.5 517
CUDA GeForce GTX 480 82.3 92.5 60.5 607
CUDA 4× Tesla C1060 275.4 309.4 202.5 2031

Table 3: Direct Coulomb Summation kernel performance results. The column of GFLOPS
results are computed based on multiply-add and reciprocal-sqrt operations counting as two
floating point operations each, with all other floating point arithmetic operations counting
as one operation.

Short-Range Cutoff Electrostatics. The performance of the short-
range cutoff electrostatic potential kernel was measured for the computation
of a potential map for a 1.5× 107 Å3 water box containing 1,534,539 atoms,
with a 0.5 Å lattice spacing. The water box was created with a volume and
atom density representative of the biomolecular complexes studied during
large scale molecular dynamics simulations [8] and was generated using the

19

Device Runtime Speedup Speedup
(sec) vs. QX6700 vs. X5550

CPU Intel QX6700 SSE 480.07 1.00 0.74
CPU Intel X5550 SSE 353.85 1.36 1.00
CUDA C870 (G80) 20.02 23.98 17.67
CUDA GTX 280 (GT200) 14.86 32.30 23.81
CUDA Tesla C2050 (Fermi) 10.06 47.72 35.17

Table 4: Comparison of performance for the short-range cutoff kernel tested with a 1.5×
107 Å3 water box containing 1,534,539 atoms.

‘solvate’ plugin included with VMD [1]. A 100-million-atom molecular dy-
namics simulation has been specified as a model problem for the NSF Blue
Waters petascale supercomputer, creating a strong motivation for the de-
velopment of molecular dynamics analysis tools capable of operating in this
regime. The 1.5 million atom test case is small enough to run in one pass
on a single GPU; yet large enough to yield accurate timings and to provide
performance predictions for much larger problems such as those targeting
Blue Waters.

CUDA benchmarks were performed on three major generations of CUDA
capable GPU devices: G80, GT200, and the Fermi architecture. The results
in Table 4 demonstrate the tremendous GPU speedups that can be achieved
using the combination of memory bandwidth optimization techniques and
the use of the CPU to optimize the GPU workload by handling exceptional
work units entirely on the host side.

5 Future Directions

An important extension to the short-range cutoff kernel is to compute the
particle–particle non-bonded force interactions, which is generally the most
time consuming part of each time step in a molecular dynamics simulation.
The calculation involves the gradients of the electrostatic and Lennard–Jones
potential energy functions. Although more computationally intensive than
the electrostatic potential interaction, the problem is challenging due to hav-
ing a less uniform workload (particles rather than a grid point lattice), extra
parameters based on atom types (for the Lennard–Jones interactions), and
some additional considerations imposed by the model (e.g., excluding inter-
actions between pairs of atoms that are covalently bonded to each other).

20

References

[1] William Humphrey, Andrew Dalke, and Klaus Schulten. VMD – Visual
Molecular Dynamics. J. Mol. Graphics, 14:33–38, 1996.

[2] Nathan A. Baker, David Sept, Simpson Joseph, Michael J. Holst,
and J. Andrew McCammon. Electrostatics of nanosystems: Applica-
tion to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA,
98(18):10037–10041, 2001.

[3] John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy,
Leonardo G. Trabuco, and Klaus Schulten. Accelerating molecular mod-
eling applications with graphics processors. J. Comp. Chem., 28:2618–
2640, 2007.

[4] James C. Phillips and John E. Stone. Probing biomolecular machines
with graphics processors. Communications of the ACM, 52(10):34–41,
2009.

[5] John E. Stone, David Gohara, and Guochun Shi. OpenCL: A parallel
programming standard for heterogeneous computing systems. Comput.
in Sci. and Eng., 12:66–73, 2010.

[6] Christopher I. Rodrigues, David J. Hardy, John E. Stone, Klaus Schul-
ten, and Wen-mei W. Hwu. GPU acceleration of cutoff pair potentials for
molecular modeling applications. In CF’08: Proceedings of the 2008 con-
ference on Computing Frontiers, pages 273–282, New York, NY, USA,
2008. ACM.

[7] David J. Hardy, John E. Stone, and Klaus Schulten. Multilevel summa-
tion of electrostatic potentials using graphics processing units. J. Paral.
Comp., 35:164–177, 2009.

[8] Peter L. Freddolino, Anton S. Arkhipov, Steven B. Larson, Alexander
McPherson, and Klaus Schulten. Molecular dynamics simulations of the
complete satellite tobacco mosaic virus. Structure, 14:437–449, 2006.

21

