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In this chapter, we present several GPU algorithms for evaluating molecu-
lar orbitals on three-dimensional lattices, as is commonly used for molecular
visualization. For each kernel, we describe necessary design trade-offs, appli-
cability to various problem sizes, and performance on different generations
of GPU hardware. Further, we demonstrate the appropriate and effective
use of fast on-chip GPU memory subsystems for access to key data struc-
tures, show several GPU kernel optimization principles, and explore the
application of advanced techniques such as dynamic kernel generation and
just-in-time (JIT) kernel compilation techniques.1

1 Introduction, Problem Statement, and Context

The GPU kernels described here form the basis for the high performance
molecular orbital display algorithms in VMD [2], a popular molecular visu-
alization and analysis tool. VMD (Visual Molecular Dynamics) is a software
system designed for displaying, animating, and analyzing large biomolecular
systems. More than 33,000 users have registered and downloaded the most
recent VMD version 1.8.7. Due to its versatility and user-extensibility, VMD
is also capable of displaying other large data sets, such as sequence data, re-
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sults of quantum chemistry calculations, and volumetric data. While VMD
is designed to run on a diverse range of hardware — laptops, desktops, clus-
ters, and supercomputers — it is primarily used as a scientific workstation
application for interactive 3D visualization and analysis. For computations
that run too long for interactive use, VMD can also be used in a batch mode
to render movies for later use. A motivation for using GPU acceleration in
VMD is to make slow batch-mode jobs fast enough for interactive use, which
can drastically improve the productivity of scientific investigations. With
CUDA-enabled GPUs widely available in desktop PCs, such acceleration can
have broad impact on the VMD user community. To date, multiple aspects
of VMD have been accelerated with CUDA, including electrostatic poten-
tial calculation, ion placement, molecular orbital calculation and display,
and imaging of gas migration pathways in proteins.

Visualization of molecular orbitals (MOs) is a helpful step in analyzing the
results of quantum chemistry calculations. The key challenge involved in the
display of molecular orbitals is the rapid evaluation of these functions on a
three-dimensional lattice; the resulting data can then be used for plotting
isocontours or isosurfaces for visualization and for other types of analyses.
Most existing software packages that render MOs perform calculations on
the CPU and have not been heavily optimized. Thus, they require runtimes
of tens to hundreds of seconds depending on the complexity of the molecu-
lar system and spatial resolution of the MO discretization and subsequent
surface plots.

With sufficient performance (two orders of magnitude faster than traditional
CPU algorithms), a fast real-space lattice computation enables interactive
display of even very large electronic structures and makes it possible to
smoothly animate trajectories of orbital dynamics. Prior to the use of the
GPU, this could only be accomplished through extensive batch mode precal-
culation and pre-loading of time-varying lattice data into memory, making
it impractical for every day interactive visualization tasks. Efficient single-
GPU algorithms are capable of evaluating molecular orbital lattices up to
186 times faster than a single CPU core (see Table 1), enabling them to
be rapidly computed and animated on-the-fly for the first time. A multi-
GPU version of our algorithm has been benchmarked at up to 419 times the
performance of a single CPU core (see Table 2).
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Figure 1: An example of MO isovalue surfaces resulting from the lattice of wavefunction
amplitudes computed for a Carbon-60 molecule. Positive valued isosurfaces are shown in
blue, and negative valued isosurfaces are shown in orange.

2 Core Method

Since our target application is visualization-focused, we are concerned with
achieving interactive rendering performance while maintaining sufficient ac-
curacy. The CUDA programming language enables GPU hardware features
— inaccessible in existing programmable shading languages — to be ex-
ploited for higher performance, and enables the use of multiple GPUs to
accelerate computation further. Another advantage of using CUDA is that
the results can be used for non-visualization purposes.

Our approach combines several performance enhancement strategies. First,
we use the host CPU to carefully organize input data and coefficients, elimi-
nating redundancies and enforcing a sorted ordering that benefits subsequent
GPU memory traversal patterns. The evaluation of molecular orbitals on
a 3-D lattice is performed on one or more GPUs; the 3-D lattice is de-
composed into 2-D planar slices, each of which are assigned to a GPU and
computed. The workload is dynamically scheduled across the pool of GPUs
to balance load on GPUs of varying capability. Depending on the specific
attributes of the problem, one of three hand-coded GPU kernels is algorith-
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mically selected to optimize performance. The three kernels are designed
to use different combinations of GPU memory systems to give peak mem-
ory bandwidth and arithmetic throughput depending on whether the input
data can fit into constant memory, shared memory, or L1/L2 cache (in the
case of recently released NVIDIA “Fermi” GPUs). One useful optimiza-
tion involves the use of zero-copy memory access techniques based on the
CUDA mapped host memory feature to eliminate latency associated with
calls to cudaMemcpy(). Another optimization involves dynamically gen-
erating a problem-specific GPU kernel “on-the-fly” using just-in-time (JIT)
compilation techniques, thereby eliminating various sources of overhead that
exist in the three general pre-coded kernels.

3 Algorithms, Implementations, and Evaluations

A molecular orbital (MO) represents a statistical state in which an electron
can be found in a molecule, where the MO’s spatial distribution is correlated
with the associated electron’s probability density. Visualization of MOs is
an important task for understanding the chemistry of molecular systems.
MOs appeal to the chemist’s intuition, and inspection of the MOs aids in
explaining chemical reactivities. Some popular software tools with these
capabilities include MacMolPlt [3], Molden [4], Molekel [5], and VMD [2].

The calculations required for visualizing MOs are computationally demand-
ing, and existing quantum chemistry visualization programs are fast enough
to interactively compute MOs for only small molecules on a relatively coarse
lattice. At the time of this writing, only VMD and MacMolPlt support
multi-core CPUs, and only VMD uses graphics processing units (GPUs) to
accelerate molecular orbital computations. A great opportunity exists to
improve upon the capabilities of existing tools in terms of interactivity, vi-
sual display quality, and scalability to larger and more complex molecular
systems.

3.1 Mathematical Background

Here we provide a short introduction to MOs, basis sets, and their under-
lying equations. Interested readers are directed to seek out further detail
from computational chemistry texts and review articles [6, 7]. Quantum
chemistry packages solve the electronic Schrödinger equation HΨ = EΨ for
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a given system. Molecular orbitals are the solutions produced by these pack-
ages. MOs are the eigenfunctions Ψν of the molecular wavefunction Ψ, with
H the Hamiltonian operator and E the system energy. The wavefunction
determines molecular properties. For instance, the one-electron density is
ρ(r) = |Ψ(r)|2. The visualization of the molecular orbitals resulting from
quantum chemistry calculations requires evaluating the wavefunction on a
3-D lattice so that isovalue surfaces can be computed and displayed. With
minor modifications, the algorithms and approaches we present for evaluat-
ing the wavefunction can be adapted to compute other molecular properties
such as charge density, the molecular electrostatic potential, or multipole
moments.

Each MO Ψν can be expressed as a linear combination over a set of K basis
functions Φκ,

Ψν =
K∑

κ=1

cνκΦκ, (1)

where cνκ are coefficients contained in the quantum chemistry calculation
output files, and used as input for our algorithms. The basis functions used
by the vast majority of quantum chemical calculations are atom-centered
functions that approximate the solution of the Schrödinger equation for a
single hydrogen atom with one electron, so-called “atomic orbitals.” For
increased computational efficiency, Gaussian type orbitals (GTOs) are used
to model the basis functions, rather than the exact solutions for the hydrogen
atom:

ΦGTO
i,j,k (R, ζ) = Nζijk xi yj zk e−ζR2

. (2)

The exponential factor ζ is defined by the basis set; i, j, and k, are used
to modulate the functional shape; and Nζijk is a normalization factor that
follows from the basis set definition. The distance from a basis function’s
center (nucleus) to a point in space is represented by the vector R = {x, y, z}
of length R = |R|.

The exponential term in Eq. (2) determines the radial decay of the function.
To accurately describe the radial behavior of atomic orbitals, composite
basis functions known as contracted GTOs (CGTOs) are composed of a
linear combination of P individual GTO primitives,

ΦCGTO
i,j,k (R, {cp}, {ζp}) =

P∑
p=1

cpΦGTO
i,j,k (R, ζp). (3)
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The set of contraction coefficients {cp} and associated exponents {ζp} defin-
ing the CGTO are contained in the quantum chemistry simulation output.

CGTOs are classified into different shells based on the sum l = i + j + k
of the exponents of the x, y, and z factors. The shells are designated by
letters s, p, d, f, and g for l = 0, 1, 2, 3, 4, respectively, where we explicitly
list here the most common shell types but note that higher-numbered shells
are occasionally used. The set of indices for a shell are also referred to as the
angular momenta of that shell. We establish an alternative indexing of the
angular momenta based on the shell number l and a systematic indexing
m over the possible number of sums l = i + j + k, where Ml =

(
l+2

l

)
counts the number of combinations and m = 0, . . . ,Ml−1 references the set
{(i, j, k) : i + j + k = l}.

The linear combination defining the MO Ψν must also sum contributions
by each of the N atoms of the molecule and the Ln shells of each atom n.
The entire expression, now described in terms of the data output from a
QM package, for an MO wavefunction evaluated at a point r in space, then
becomes

Ψν(r) =
K∑

κ=1

cνκΦκ

=
N∑

n=1

Ln−1∑
l=0

Ml−1∑
m=0

cνnlmΦCGTO
n,l,m (Rn, {c}, {ζ}), (4)

where we have replaced cνκ by cνnlm, with the vectors Rn = r−rn connecting
the position rn of the nucleus of atom n to the desired spatial coordinate
r. We have dropped the subscript p from the set of contraction coefficients
{c} and exponents {ζ} with the understanding that each CGTO requires an
additional summation over the primitives, as expressed in Eq. (3).

The normalization factor Nζijk in Eq. (2) can be factored into a first part
ηζl that depends on both the exponent ζ and shell type l = i + j + k and a
second part ηijk (= ηlm in terms of our alternative indexing) that depends
only on the angular momentum,

Nζijk =
(

2ζ

π

) 3
4
√

(8ζ)l ·

√
i! j! k!

(2i)! (2j)! (2k)!
= ηζl · ηijk. (5)

The separation of the normalization factor in Eq. (5) allows us to factor
the summation over the primitives from the summation over the array of

6



Figure 2: Structure of the basis set and the wavefunction coefficient arrays for HCl us-
ing the 6-31G* basis [8]. Each rounded box contains the data for a single shell. Each
square box in the basis set array represents a CGTO primitive composed of a contraction
coefficient c′p and exponent ζp. In the wavefunction array the elements signify linear com-
bination coefficients c′νnlm for the basis functions. Despite the differing angular momenta,
all basis functions of a shell (marked by x, y, and z) use the same linear combination of
primitives (see lines relating the two arrays). For example, the 2p shell in Cl is associ-
ated with 3 angular momenta that all share the exponents and contraction coefficients of
the same 6 primitives. There can be more than one basis function for a given shell type
(brackets below array). c©2009 Association for Computing Machinery, Inc. Reprinted by
permission [1].

wavefunction coefficients. Combining Eqs. (2)–(4) and rearranging terms
gives

Ψν(r) =
N∑

n=1

Ln−1∑
l=0

(
Ml−1∑
m=0

cνnlmηlm︸ ︷︷ ︸
c′νnlm

ωlm

)
×

(
Pnl∑
p=1

cpηζl︸︷︷︸
c′p

exp(−ζpR
2
n)

)
. (6)

We define ωlm = xi yj zk using our alternative indexing over l and m ex-
plained in the previous section. Both data storage and operation count can
be reduced by defining c′νalm = cνalmηlm and c′p = cpηζl. The number of
primitives Pnl depends on both the atom n and the shell number l. Fig. 2
shows the organization of the basis set and wavefunction coefficient arrays
listed for a small example molecule.

3.2 GPU Molecular Orbital Algorithms

Visualization of MOs requires the evaluation of the wavefunction on a 3-D
lattice, which can be used to create 3-D isovalue surface renderings, 3-D
height field plots, or 2-D contour line plots within a plane. Since wavefunc-
tion amplitudes diminish to zero beyond a few Angstroms (due to the radial
decay of exponential basis functions), the boundaries of the 3-D lattice have
only a small margin beyond the bounding box containing the molecule of
interest.
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The MO lattice computation is heavily data-dependent, consisting of a se-
ries of nested loops that evaluate the primitives composing CGTOs and the
angular momenta for each shell, with an outer loop over atoms. Since the
number of shells can vary by atom and the number of primitives and an-
gular momenta can be different for each shell, the innermost loops traverse
variable-length coefficient arrays containing CGTO contraction coefficients
and exponents, and the wavefunction coefficients. Quantum chemistry pack-
ages often produce output files containing redundant basis set definitions for
atoms of the same species; such redundancies are eliminated during prepro-
cessing, resulting in more compact data and thus enabling more effective use
of fast but limited capacity on-chip GPU memory systems for fast access to
key coefficient arrays. By carefully sorting and packing coefficient arrays
as a preprocessing step, the memory access patterns that occur within the
inner loops of the GPU algorithms can be optimized to achieve peak perfor-
mance. Each of the coefficient arrays is sorted on the CPU, so that array
elements are accessed in a strictly consecutive pattern. The pseudo-code
listing in Algorithm 1 summarizes the performance-critical portion of the
MO computation described by Eq. (6).

The GPU MO algorithm decomposes the 3-D lattice into a set of 2-D planar
slices, which are computed independently of each other. In the case of a
single-GPU calculation, a simple for loop processes the slices one at a time
until they are all completed. For a multi-GPU calculation, the set of slices
is dynamically distributed among the pool of available GPUs. Each of the
GPUs requests a slice index to compute, computes the assigned slice, and
stores the result at the appropriate location in host memory.

Each planar slice computed on a GPU is decomposed into a 2-D CUDA grid
consisting of fixed-size 8 × 8 thread blocks. As the size of the 3-D lattice
increases, the number of planar slices increases, and the number of thread
blocks in each CUDA grid increases accordingly. Each thread is responsible
for computing the wavefunction at a single lattice point. For lattice dimen-
sions that cannot be evenly divided by the thread block dimensions or the
memory coalescing size, padding elements are added (to avoid unnecessary
branching or warp divergence). The padding elements are computed just
as the interior lattice points, but the results are discarded at the end of
the computation. Figure 3 illustrates the multi-level parallel decomposition
strategy and required padding elements.

In designing an implementation of the MO algorithm for the GPU, one
must take note of a few key attributes of the algorithm. Unlike simpler
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Algorithm 1 Calculate MO value Ψν(r) at lattice point r.
1: Ψν ⇐ 0.0
2: ifunc ⇐ 0 {index the array of wavefunction coefficients}
3: ishell ⇐ 0 {index the array of shell numbers}
4: for n = 1 to N do {loop over atoms}
5: (x, y, z) ⇐ r− rn {rn is position of atom n}
6: R2 ⇐ x2 + y2 + z2

7: iprim ⇐ atom basis[n] {index the arrays of basis set data}
8: for l = 0 to num shells per atom[n]− 1 do {loop over shells}
9: ΦCGTO ⇐ 0.0

10: for p = 0 to num prim per shell[ishell]− 1 do {loop over primitives}
11: c′p ⇐ basis c[iprim]
12: ζp ⇐ basis zeta[iprim]
13: ΦCGTO ⇐ ΦCGTO + c′p e−ζp R2

14: iprim ⇐ iprim + 1
15: end for
16: for all 0 ≤ i ≤ shell type[ishell] do {loop over angular momenta}
17: jmax ⇐ shell type[ishell]− i
18: for all 0 ≤ j ≤ jmax do
19: k ⇐ jmax− j
20: c′ ⇐ wavefunction[ifunc]
21: Ψν ⇐ Ψν + c′ ΦCGTO xi yj zk

22: ifunc ⇐ ifunc + 1
23: end for
24: end for
25: ishell ⇐ ishell + 1
26: end for
27: end for
28: return Ψν

forms of spatially-evaluated functions that arise in molecular modeling such
as Coulombic potential kernels, the MO algorithm involves a comparatively
large number of floating point operations per lattice point, and involves
reading operands from several different arrays. Since the MO coefficients
that must be fetched depend on the atom type, basis set, and other factors
that vary due to the data-dependent nature of the algorithm, the control
flow complexity is also quite a bit higher than for many other algorithms.
For example, the bounds on the loops on lines 10 and 16 of Alg. 1 are both
dependent on the shell being evaluated. The MO algorithm makes heavy use
of exponentials which are mapped to the dedicated exponential arithmetic
instructions provided by most GPUs. The cost of evaluating ex by calling
the CUDA routines expf() or expf(), or evaluating 2x via exp2f(), is
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Figure 3: Molecular orbital multi-level parallel decomposition. The 3-D MO lattice is
decomposed into 2-D planar slices that are computed by the pool of available GPUs.
Each GPU computes a single slice, decomposing the slice into a grid of 8 × 8 thread
blocks, with each thread computing one MO lattice point. Padding elements are added
to guarantee coalesced global memory accesses for lattice data.

much lower than on the CPU, yielding a performance benefit well beyond
what would be expected purely as a result of effectively using the massively
parallel GPU hardware.

Given the high performance of the various exponential routines on the GPU,
the foremost consideration for achieving peak performance is attaining suf-
ficient operand bandwidth to keep the GPU arithmetic units fully occupied.
The algorithms we describe achieve this through careful use of the GPU’s
fast on-chip caches and shared memory. The MO algorithm’s inner loops
read varying numbers of coefficients from several different arrays. The over-
all size of each of the coefficient arrays depends primarily on the size of the
molecule and the basis set used. The host application code dispatches the
MO computation using one of several GPU kernels depending on the size
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/∗ mult ip ly with the appropr ia te wavefunct ion c o e f f i c i e n t ∗/
f loat tmpshe l l =0.0 f ;
switch ( s h e l l t y p e ) {

case S SHELL :
value += wave f [ i f un c++] ∗ cont rac t ed g to ;
break ;

case P SHELL :
tmpshe l l += wave f [ i f un c++] ∗ xd i s t ;
tmpshe l l += wave f [ i f un c++] ∗ yd i s t ;
tmpshe l l += wave f [ i f un c++] ∗ z d i s t ;
va lue += tmpshe l l ∗ cont rac t ed g to ;
break ;

case D SHELL :
tmpshe l l += wave f [ i f un c++] ∗ xd i s t 2 ;
tmpshe l l += wave f [ i f un c++] ∗ xd i s t ∗ yd i s t ;
tmpshe l l += wave f [ i f un c++] ∗ yd i s t 2 ;
tmpshe l l += wave f [ i f un c++] ∗ xd i s t ∗ z d i s t ;
tmpshe l l += wave f [ i f un c++] ∗ yd i s t ∗ z d i s t ;
tmpshe l l += wave f [ i f un c++] ∗ zd i s t 2 ;
va lue += tmpshe l l ∗ cont rac t ed g to ;
break ;

// abr idged f o r b r ev i ty

Figure 4: Example of completely unrolled shell-type-specific angular momenta code.

of the MO coefficient arrays, and the capabilities of the attached GPU de-
vices. Optimizations that were applied to all of the kernel variants include
precomputation of common factors, specialization and unrolling of the an-
gular momenta loops (lines 16 to 24 of Alg. 1). Rather than processing the
angular momenta with loops, a switch statement is used that can process
all of the supported shell types with completely unrolled loop iterations, as
exemplified in the abbreviated source code shown in Fig. 4.

Constant Cache. When all of the MO coefficient arrays (primitives,
wavefunctions, etc) will fit within 64-kB, they can be stored in the fast
GPU constant memory. GPU constant memory is cached and provides near-
register-speed access when all threads in a warp access the same element at
the same time. Since all of the threads in a thread block must process the
same basis set coefficients and CGTO primitives, the constant cache kernel
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source code closely follows the pseudocode listing in Alg. 1.

Tiled Shared Memory. If the MO coefficient arrays exceed 64-kB in ag-
gregate size, the host application code dispatches a GPU kernel that dynam-
ically loads coefficients from global memory into shared memory as-needed,
acting as a form of software-managed cache for arbitrarily complex prob-
lems. By carefully sizing shared memory storage areas (tiles) for each of the
coefficient arrays, the code for loading new coefficients can be placed out-
side of performance-critical loops, which greatly reduces overhead. Within
the innermost loops, the coefficients in a shared memory tile are read by
all threads in the same thread block, reducing global memory accesses by
a factor of 64 (for 8 × 8 thread blocks). For the outer loops (over atoms,
basis set indices, the number of shells per atom, and the primitive count
and shell type data in the loop over shells) several coefficients are packed
together with appropriate padding into 64-byte memory blocks, guarantee-
ing coalesced global memory access and minimizing the overall number of
global memory reads. For the innermost loops, global memory reads are
minimized by loading large tiles immediately prior to the loop over basis set
primitives and the loop over angular momenta, respectively. Tiles must be
sized to a multiple of the 64-byte memory coalescing size for best memory
performance, and power-of-two tile sizes greatly simplify shared memory ad-
dressing arithmetic. Tiles must also be sized large enough to provide all of
the operands consumed by the loops that follow the tile loading logic. Fig-
ure 5 illustrates the relationship between coalesced memory block sizes, the
portion of a loaded array that will be referenced during subsequent inner-
most loops, and global memory padding and unreferenced data that exist to
simplify shared memory addressing arithmetic and to guarantee coalesced
global memory accesses.

Hardware Global Memory Cache. NVIDIA recently released a new
generation of GPUs based on the “Fermi” architecture, that incorporate
both L1 and L2 caches for global memory. The global memory cache in
Fermi-based GPUs enables a comparatively simple kernel that uses only
global memory references to run at nearly the speed of the highly-tuned
constant cache kernel; it outperforms the tiled shared memory kernel due to
the reduction in arithmetic operations encountered within the inner two loop
levels of the kernel. The hardware cache kernel can operate on any problem
size, with an expected graceful degradation in performance up until the
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MO coefficient array in GPU global memory.
Tiles are referenced in consecutive order.

Array tile loaded in GPU shared memory. Tile size is a power-of-two, a 
multiple of coalescing size, and allows simple indexing in inner loops. 
Global memory array indices are merely offset to reference an MO
coefficient within a tile loaded in fast on-chip shared memory.

64-byte memory 
coalescing block 

boundaries

Surrounding data, 
unreferenced by 

next batch of loop 
iterations

Full tile 
padding

Figure 5: Schematic representation of the tiling strategy used to load subsets of large
arrays from GPU global memory, into small regions of the high performance on-chip shared
memory. c©2009 Association for Computing Machinery, Inc. Reprinted by permission [1].

point where the the problem size exceeds the cache capacity, at which point
it may begin to perform slower than uncached global memory accesses if
cache thrashing starts to occur. Even in the situation where the problem
size exceeds cache capacity, the strictly consecutive memory access patterns
employed by the kernel enable efficient broadcasting of coefficients to all of
the threads in the thread block.

Zero-copy Host-device I/O. One performance optimization that can
be paired with all of the other algorithms is the use of CUDA “host mapped
memory”. Host mapped memory allocations are areas of host memory that
are made directly accessible to the GPU through on-demand transparent
initiation of PCI-express transfers between the host and GPU. Since the
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PCI-e transfers incur significant latency and the PCI-e bus can only provide
a fraction of the peak bandwidth of the on-board GPU global memory, this
technique is a net win only when the host side buffers are read from or
written to only once during kernel execution. In this way, GPU kernels
can directly access host memory buffers, eliminating the need for explicit
host-GPU memory transfer operations and intermediate copy operations.
In the case of the MO kernels, the output lattice resulting from the kernel
computation can be directly written to the host output buffer, enabling
output memory writes to be fully overlapped with kernel execution.

Just-in-time Kernel Generation. Since Algorithm 1 is very data-dependent,
we observe that most instructions for loop control and conditional execution
could be eliminated for a given molecule by generating a molecule-specific
kernel at runtime. A significant optimization opportunity exists based on
dynamical generation of a molecule-specific GPU kernel. The kernel is gen-
erated when a molecule is initially loaded, and may then be reused. The
generation and just-in-time (JIT) compilation of kernels at runtime has as-
sociated overhead that must be considered when determining how much
code to convert from data-dependent form into a fixed sequence of oper-
ations. The GPU MO kernel is dynamically generated by emitting the
complete arithmetic sequence normally performed by looping over shells,
primitives, and angular momenta for each atom type. This on-demand ker-
nel generation scheme eliminates the overhead associated with loop control
instructions (greatly increasing the arithmetic density of the resulting ker-
nel) and allows the GPU to perform much closer to its peak floating point
arithmetic rate. At present, CUDA lacks a mechanism for runtime com-
pilation of C-language source code, but provides a mechanism for runtime
compilation of the PTX intermediate pseudo-assembly language through a
driver-level interface. OpenCL explicitly allows dynamic kernel compilation
from C-language source.

To evaluate the dynamic kernel generation technique with CUDA, we im-
plemented a code generator within VMD and then saved the dynamically-
generated kernel source code to a file. The standard batch mode CUDA
compilers were then used to recompile VMD incorporating the generated
CUDA kernel. We have also implemented an OpenCL code generator which
operates in much the same way, but the kernel can be compiled entirely at
runtime so long as the OpenCL driver supports on-line compilation. One
significant complication with implementing dynamic kernel generation for
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OpenCL is the need to handle a diversity of target devices which often have
varying preferences for the width of vector types, work-group sizes, and other
parameters which can impact the structure of the kernel. For simplicity of
the present discussion, we present the results for the dynamically generated
CUDA kernel only.

The source code for these algorithms is available free of charge and they are
currently implemented in the molecular visualization and analysis package
VMD [1, 2].

4 Final Evaluation

The performance of each of the MO algorithms was evaluated on several
hardware platforms. The test datasets were selected to be representative
of the range of quantum chemistry simulation data that researchers often
work with, and to exercise the limits of our algorithms, particularly in the
case of the GPU. The benchmarks were run on a Sun Ultra 24 workstation
containing a 2.4 GHz Intel Core 2 Q6600 quad core CPU running 64-bit Red
Hat Enterprise Linux version 4 update 6. The CPU code was compiled using
the GNU C compiler (gcc) version 3.4.6 or Intel C/C++ Compiler (icc)
version 9.0. GPU benchmarks were performed using the NVIDIA CUDA
programming toolkit version 3.0 running on several generations of NVIDIA
GPUs.

Single-GPU Performance Results for Carbon-60

All of the MO kernels presented have been implemented in either production
or experimental versions of the molecular visualization program VMD [2].
For comparison of the CPU and GPU implementations, a computationally
demanding carbon-60 test case was selected. The C60 system was simulated
with GAMESS, resulting in an output file (containing all of the wavefunction
coefficients, basis set, and atomic element data) which was then loaded into
VMD. The MO was computed on a lattice with a 0.075 Å spacing, with
lattice sample dimensions of 172×173×169. The C60 test system contained
60 atoms, 900 wavefunction coefficients, 15 unique basis set primitives, and
360 elements in the per-shell primitive count and shell type arrays. The
performance results listed in Table 1 compare the runtime for computing
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Device Kernel CPU Runtime Speedup Speedup
cores (sec) vs. Q6600 vs. X5550

Q6600 icc-sse-cephes 1 46.58 1.00 0.65
Q6600 icc-libc 4 37.38 1.24 0.82
Q6600 icc-sse-cephes 4 11.74 3.97 2.61
X5550 icc-sse-cephes 1 30.64 1.52 1.00
X5550 icc-sse-cephes 4 7.82 5.95 3.92
X5550 icc-sse-cephes 8 4.13 11.27 7.42
G8800 tiled-shared 1 0.89 52.0 34.4
G8800 const-cache 1 0.57 81.7 54.7
G280 tiled-shared 1 0.46 100. 66.6
G280 const-cache 1 0.37 126. 82.8
C2050 tiled-shared 1 0.46 100. 66.6
C2050 L1-cache (16kB) 1 0.33 141. 92.8
C2050 const-cache 1 0.31 149. 98.8
C2050 const-cache, zero-copy 1 0.30 155. 102.
G480 tiled-shared 1 0.37 126. 82.8
G480 L1-cache (16kB) 1 0.27 172. 113.
G480 const-cache 1 0.26 181. 117.
G480 const-cache, zero-copy 1 0.25 186. 122.
G480 JIT, const-cache 1 0.142 328. 215.
G480 JIT, const-cache, zero-copy 1 0.135 345. 227.

Table 1: Single-GPU comparison of MO kernel performance for the carbon-60 test case rel-
ative to CPU reference codes. The devices compared above are: 2.4GHz Intel Core 2 Q6600
CPU (Q6600), 2.6GHz Intel Xeon X5550 CPU (X5550), NVIDIA GeForce 8800 GTX GPU
(G880), NVIDIA GeForce GTX 280 GPU (G280), NVIDIA Tesla C2050 GPU (C2050),
and NVIDIA GeForce GTX 480 GPU (G480). Timing results include all host-GPU mem-
ory transfers and kernel launches required for evaluation of the molecular orbital for a
single combination of parameters and for a single simulation timestep. These timings do
not include one-time disk I/O and associated sorting and preprocessing associated with
the initial loading of simulation log files.

the MO lattice on one or more CPU cores, and on several generations of
GPUs using a variety of kernels.

The CPU “icc-libc” result presented in the table refers to a kernel that
makes straightforward use of the expf() routine from the standard C li-
brary. As is seen in the table, this results in relatively low performance even
when using multiple cores, so we implemented our own expf() routine. The
single- and multi-core CPU results labeled “icc-sse-cephes” were based on
a hand-written SIMD-vectorized SSE adaptation of the scalar expf() rou-
tine from the Cephes [9] mathematical library. The SSE expf() routine
was hand-coded using intrinsics that are compiled directly into x86 SSE
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machine instructions. The resulting “icc-sse-cephes” kernel has previously
been shown to outperform the CPU algorithms implemented in the popu-
lar MacMolPlt and Molekel visualization tools, and can be taken to be a
representative peak-performance CPU reference [1].

The single-core CPU result for the “icc-sse-cephes” kernel was selected as
the basis for normalizing performance results because it represents the best-
case single-core CPU performance. By benchmarking on a single core, there
is no contention for limited CPU cache or main memory bandwidth, and
performance can be extrapolated for an arbitrary number of cores. Most
workstations used for scientific visualization and analysis tasks now contain
four or eight CPU cores, so we consider the four-core CPU results to be
representative of a typical CPU use-case today.

The CUDA “const-cache” kernel stores all MO coefficients within the 64-kB
GPU constant memory. The “const-cache” kernel can only be used for data
sets that fit within fixed-size coefficient arrays within GPU constant memory,
as defined at compile-time. The “const-cache” results represent the best-
case performance scenario for the GPU. The CUDA “tiled-shared” kernel
loads blocks of the MO coefficient arrays from global memory using fully co-
alesced reads, storing them in high speed on-chip shared memory where they
are accessed by all threads in each thread block. The “tiled-shared” kernel
supports problems of arbitrary size. The CUDA Fermi “L1-cache (16kB)”
kernel uses global memory reads for all MO coefficient data, and takes ad-
vantage of the the Fermi-specific L1/L2 cache hardware to achieve perfor-
mance exceeding the software-managed caching approach implemented by
the “tiled-shared” kernel. The CUDA results for “zero-copy” kernels demon-
strate the performance advantage gained by having the GPU directly write
orbital lattice results back to host memory rather than requiring the CPU
to execute cudaMemcpy() operations subsequent to each kernel completion.
The CUDA results for the just-in-time (JIT) kernel generation approach
show that the GPU runs a runtime-generated basis-set-specific kernel up to
1.85 times faster than the fully general loop-based kernels.

All of the benchmark test cases were small enough to reside within the
GPU constant memory after preprocessing removed duplicate basis sets,
so the “tiled-shared” and “L1-cache (16kB)” test cases were conducted by
overriding the runtime dispatch heuristic, forcing execution using the desired
CUDA kernel irrespective of problem size.
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Multi-GPU Performance Results for Carbon-60

We ran multi-GPU performance tests on an eight-core system based on
2.6 GHz Intel Xeon X5550 CPUs, containing an NVIDIA Quadro 5800 GPU,
and three NVIDIA Tesla C1060 GPUs (both GPU types provide identical
CUDA performance, but the Tesla C1060 has no video output hardware).
Table 2 lists results for a representative high resolution molecular orbital
lattice intended to show scaling performance for a very computationally de-
manding test case. The four-GPU host benchmarked in Table 2 outperforms
the single-core SSE results presented in Table 1 by up to a factor of 419 (vs.
Q6600 CPU) and 276 (vs. X5550 CPU). The four-GPU host outperforms
the 8-core SSE X5550 CPU result by a factor of 37, enabling interactive
molecular visualizations that were previously impossible to achieve with a
single machine.

Device GPU Runtime Speedup Speedup Multi-GPU
Workers (sec) vs. Q6600 vs. X5550 Efficiency

Quadro 5800 1 0.381 122. 80.4 100.0%
Tesla C1060 2 0.199 234. 154. 95.5%
Tesla C1060 3 0.143 325. 214. 88.6%
Tesla C1060 4 0.111 419. 276. 85.7%

Table 2: Single-machine multi-GPU performance for computation of a high-resolution
(172× 173× 169) molecular orbital lattice for C60. Speedup results are compared to the
single-core SSE CPU results presented in Table 1.

5 Future Directions

The development of a range-limited version of the molecular orbital algo-
rithm, that uses a distance cutoff to truncate the contributions of atoms that
are either far away or that have very rapidly decaying exponential terms, can
change the molecular orbital computation from a quadratic time complex-
ity algorithm into one with linear time complexity, enabling it to perform
significantly faster for display of very large quantum chemistry simulations.
Additionally, just-in-time dynamic kernel generation techniques can be ap-
plied to other data-dependent algorithms like the molecular orbital algo-
rithm presented here.
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