
NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Particle-Grid Methods:
Molecular Surfaces and Synthetic Density Maps

John Stone

Theoretical and Computational Biophysics Group

Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/gpu/

Workshop on GPU Programming for Molecular Modeling ,

Beckman Institute for Advanced Science and Technology,

University of Illinois at Urbana-Champaign, August 3, 2013

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Electrons in
Vibrating Buckyball

Cellular Tomography,

 Cryo-electron Microscopy

Poliovirus

Ribosome Sequences

VMD – “Visual Molecular Dynamics”

Whole Cell Simulations

• Visualization and analysis of:

– molecular dynamics simulations

– quantum chemistry calculations

– particle systems and whole cells

– sequence data

• User extensible w/ scripting and plugins

• http://www.ks.uiuc.edu/Research/vmd/

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Accelerated Trajectory Analysis

and Visualization in VMD
GPU-Accelerated Feature Peak speedup vs.

single CPU core

Molecular orbital display 120x

Radial distribution function 92x

Electrostatic field calculation 44x

Molecular surface display 40x

Ion placement 26x

MDFF density map synthesis 26x

Implicit ligand sampling 25x

Root mean squared fluctuation 25x

Radius of gyration 21x

Close contact determination 20x

Dipole moment calculation 15x

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Molecular Surface Visualization

Poliovirus

• Large biomolecular

complexes are difficult to

interpret with atomic detail

graphical representations

• Even secondary structure

representations become

cluttered

• Surface representations are

easier to use when greater

abstraction is desired, but are

computationally costly

• Most surface display methods

incapable of animating

dynamics of large structures

w/ millions of particles

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

• Displays continuum of structural detail:

– All-atom models

– Coarse-grained models

– Cellular scale models

– Multi-scale models: All-atom + CG, Brownian + Whole Cell

– Smoothly variable between full detail, and reduced resolution

representations of very large complexes

VMD “QuickSurf” Representation

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and
Particle System Trajectories.

M. Krone, J. E. Stone, T. Ertl, K. Schulten. EuroVis Short Papers, pp. 67-71, 2012

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

• Uses multi-core CPUs and GPU acceleration to enable smooth

real-time animation of MD trajectories

• Linear-time algorithm, scales to millions of particles, as limited

by memory capacity

VMD “QuickSurf” Representation

Satellite Tobacco Mosaic Virus Lattice Cell Simulations

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

VMD “QuickSurf” Representation

All-atom HIV capsid simulations

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Discretized lattice models derived
from continuous model shown in
VMD QuickSurf representation

Continuous particle
based model – often 70
to 300 million particles

Lattice Microbes: High‐performance stochastic simulation method for the
reaction‐diffusion master equation

E. Roberts, J. E. Stone, and Z. Luthey‐Schulten.
J. Computational Chemistry 34 (3), 245-255, 2013.

QuickSurf Representation of

Lattice Cell Models

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Algorithm Overview
• Build spatial acceleration

data structures, optimize

data for GPU

• Compute 3-D density map,

3-D volumetric texture map:

• Extract isosurface for a

user-defined density value

3-D density map lattice,
spatial acceleration grid,

and extracted surface

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Particle Sorting, Bead

Generation, Spatial Hashing
• Particles sorted into spatial acceleration grid:

– Selected atoms or residue “beads” converted lattice

coordinate system

– Each particle/bead assigned cell index, sorted

w/NVIDIA Thrust template library

• Complication:

– Thrust allocates GPU mem. on-demand, no recourse

if insufficient memory, have to re-gen QuickSurf data

structures if caught by surprise!

• Workaround:

– Pre-allocate guesstimate workspace for Thrust

– Free the Thrust workspace right before use

– Newest Thrust allows user-defined allocator code…

Coarse resolution
spatial acceleration grid

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Spatial Hashing Algorithm Steps/Kernels

1) Compute bin index for each atom,
store to memory w/ atom index

QuickSurf uniform
grid spatial

subdivision data
structure

2) Sort list of bin and atom index tuples
(1) by bin index (thrust kernel)

3) Count atoms in each bin (2) using a
parallel prefix sum, aka scan,
compute the destination index for each
atom, store per-bin starting index and
atom count (thrust kernel)

4) Write atoms to the output indices
computed in (3), and we have
completed the data structure

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf and Limited GPU Global Memory
• High resolution molecular surfaces require a fine lattice spacing

• Memory use grows cubically with decreased lattice spacing

• Not typically possible to compute a surface in a single pass, so we

loop over sub-volume “chunks” until done…

• Chunks pre-allocated and sized to GPU global mem capacity to

prevent unexpected memory allocation failure while animating…

• Complication:

– Thrust allocates GPU mem. on-demand, no recourse if insufficient memory,

have to re-gen QuickSurf data structures if caught by surprise!

• Workaround:

– Pre-allocate guesstimate workspace for Thrust

– Free the Thrust workspace right before use

– Newest Thrust allows user-defined allocator code…

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Padding optimizes global
memory performance,
guaranteeing coalesced
global memory accesses Grid of thread blocks

Small 8x8 thread

blocks afford large

per-thread register

count, shared

memory

QuickSurf 3-D density map

decomposes into thinner 3-D
slabs/slices (CUDA grids)

… 0,0 0,1

1,1

… …

…

…

Inactive threads,
region of
discarded
output

Each thread

computes

one or more

density map

lattice points

Threads
producing
results that
are used 1,0

…

Chunk 2

Chunk 1

Chunk 0

Large volume

computed in

multiple passes, or

multiple GPUs

QuickSurf Density Parallel Decomposition

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Density Map Algorithm

• Spatial acceleration grid cells are

sized to match the cutoff radius for

the exponential, beyond which density

contributions are negligible

• Density map lattice points computed

by summing density contributions

from particles in 3x3x3 grid of

neighboring spatial acceleration cells

• Volumetric texture map is computed

by summing particle colors

normalized by their individual density

contribution

3-D density map
lattice point and
the neighboring

spatial acceleration
cells it references

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Density Map

 Kernel Optimizations

• Compute reciprocals, prefactors, other math on the host

CPU prior to kernel launch

• Use of intN and floatN vector types in CUDA kernels

for improved global memory bandwidth

• Thread coarsening: one thread computes multiple

output densities and colors

• Input data and register tiling: share blocks of input,

partial distances in regs shared among multiple outputs

• Global memory (L1 cache) broadcasts: all threads in

the block traverse the same atom/particle at the same

time

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Density Map Kernel Snippet…
for (zab=zabmin; zab<=zabmax; zab++) {

 for (yab=yabmin; yab<=yabmax; yab++) {

 for (xab=xabmin; xab<=xabmax; xab++) {

 int abcellidx = zab * acplanesz + yab * acncells.x + xab;

 uint2 atomstartend = cellStartEnd[abcellidx];

 if (atomstartend.x != GRID_CELL_EMPTY) {

 for (unsigned int atomid=atomstartend.x; atomid<atomstartend.y; atomid++) {

 float4 atom = sorted_xyzr[atomid];

 float dx = coorx - atom.x; float dy = coory - atom.y; float dz = coorz - atom.z;

 float dxy2 = dx*dx + dy*dy;

 float r21 = (dxy2 + dz*dz) * atom.w;

 densityval1 += exp2f(r21);

 /// Loop unrolling and register tiling benefits begin here……

 float dz2 = dz + gridspacing;

 float r22 = (dxy2 + dz2*dz2) * atom.w;

 densityval2 += exp2f(r22);

 /// More loop unrolling ….

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Marching Cubes

Isosurface Extraction
• Isosurface is extracted from each density map “chunk”, and

either copied back to the host, or rendered directly out of

GPU global memory via CUDA/OpenGL interop

• All MC memory buffers are pre-allocated to prevent

significant overhead when animating a simulation trajectory

QuickSurf 3-D density map

decomposes into thinner 3-D
slabs/slices (CUDA grids)

…

Chunk 2

Chunk 1

Chunk 0

Large volume

computed in

multiple passes

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Brief Marching Cubes Isosurface

Extraction Overview
• Given a 3-D volume of scalar density values and a requested

surface density value, marching cubes computes vertices and

triangles that compose the requested surface triangle mesh

• Each MC “cell” (a cube with 8 density values at its vertices)

produces a variable number of output vertices depending on how

many edges of the cell contain the requested isovalue…

• Use scan() to compute the output indices so that each worker

thread has conflict-free output of vertices/triangles

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Brief Marching Cubes Isosurface

Extraction Overview
• Once the output vertices have been computed and stored, we

compute surface normals and colors for each of the vertices

• Although the separate normals+colors pass reads the density map

again, molecular surfaces tend to generate a small percentage of

MC cells containing triangles, we avoid wasting interpolation work

• We use CUDA tex3D() hardware 3-D texture mapping:

– Costs double the texture memory and a one copy from GPU global memory

to the target texture map with cudaMemcpy3D()

– Still roughly 2x faster than doing color interpolation without the texturing

hardware, at least on GT200 and Fermi hardware

– Kepler has new texture cache memory path that may make it feasible to do

our own color interpolation and avoid the use of extra 3-D texture memory

and associated copy, with acceptable performance

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Marching Cubes

Isosurface Extraction
• Our optimized MC implementation computes per-vertex

surface normals, colors, and outperforms the NVIDIA SDK

sample by a fair margin on Fermi GPUs

• Complications:

– Even on a 6GB Quadro 7000, GPU global memory is under great

strain when working with large molecular complexes, e.g. viruses

– Marching cubes involves a parallel prefix sum (scan) to compute

target indices for writing resulting vertices

– We use Thrust for scan, has the same memory allocation issue

mentioned earlier for the sort, so we use the same workaround

– The number of output vertices can be huge, but we rarely have

sufficient GPU memory for this – we use a fixed size vertex output

buffer and hope our heuristics don’t fail us

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

QuickSurf Performance

GeForce GTX 580
Molecular

system

Atoms Resolution Tsort Tdensity TMC

vertices FPS

MscL 111,016 1.0Å 0.005 0.023 0.003 0.7 M 28

STMV capsid 147,976 1.0Å 0.007 0.048 0.009 2.4 M 13.2

Poliovirus

capsid

754,200 1.0Å 0.01 0.18 0.05 9.2 M 3.5

STMV w/ water 955,225 1.0Å 0.008 0.189 0.012 2.3 M 4.2

Membrane 2.37 M 2.0Å 0.03 0.17 0.016 5.9 M 3.9

Chromatophore 9.62 M 2.0Å 0.16 0.023 0.06 11.5 M 3.4

Membrane w/

water

22.77 M 4.0Å

4.4 0.68 0.01 1.9 M 0.18

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and
Particle System Trajectories.

M. Krone, J. E. Stone, T. Ertl, K. Schulten. EuroVis Short Papers, pp. 67-71, 2012

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Extensions and Analysis Uses for QuickSurf

Triangle Mesh
• Curved PN triangles:

– We have performed tests with post-processing the resulting triangle

mesh and using curved PN triangles to generate smooth surfaces

with a larger grid spacing, for increased performance

– Initial results demonstrate some potential, but there can be

pathological cases where MC generates long skinny triangles,

causing unsightly surface creases

• Analysis uses (beyond visualization):

– Minor modifications to the density map algorithm allow rapid

computation of solvent accessible surface area by summing the

areas in the resulting triangle mesh

– Modifications to the density map algorithm will allow it to be used

for MDFF (molecular dynamics flexible fitting)

– Surface triangle mesh can be used as the input for computing the

electrostatic potential field for mesh-based algorithms

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Challenge: Support Interactive QuickSurf for

Large Structures on Mid-Range GPUs
• Structures such as HIV

initially needed large (6GB)

GPU memory to generate

fully-detailed surface

renderings

• Goals and approach:

– Avoid slow CPU-fallback!

– Incrementally change

algorithm phases to use more

compact data types, while

maintaining performance

– Specialize code for different

performance/memory

capacity cases

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Improving QuickSurf Memory Efficiency

• Both host and GPU memory capacity limitations are a

significant concern when rendering surfaces for virus

structures such as HIV or for large cellular models which

can contain hundreds of millions of particles

• The original QuickSurf implementation used single-

precision floating point for output vertex arrays and

textures

• Judicious use of reduced-precision numerical

representations, cut the overall memory footprint of the

entire QuickSurf algorithm to half of the original

– Data type changes made throughout the entire chain from density

map computation through all stages of Marching Cubes

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Supporting Multiple Data Types for

QuickSurf Density Maps

and Marching Cubes Vertex Arrays

• The major algorithm components of QuickSurf are now

used for many other purposes:

– Gaussian density map algorithm now used for MDFF Cryo EM

density map fitting methods in addition to QuickSurf

– Marching Cubes routines also used for Quantum Chemistry

visualizations of molecular orbitals

• Rather than simply changing QuickSurf to use a particular

internal numerical representation, it is desirable to instead

use CUDA C++ templates to make type-generic versions

of the key objects, kernels, and output vertex arrays

• Accuracy-sensitive algorithms use high-precision data

types, performance and memory capacity sensitive cases

use quantized or reduced precision approaches

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Minimizing the Impact of Generality on

QuickSurf Code Complexity

• A critical factor in the simplicity of supporting multiple

QuickSurf data types arises from the so-called “gather”

oriented algorithm we employ

– Internally, all in-register arithmetic is single-precision

– Data conversions to/from compressed or reduced precision data

types are performed on-the-fly as needed

• Small inlined type conversion routines are defined for each

of the cases we want to support

• Key QuickSurf kernels are genericized using C++ template

syntax, and the compiler “connects the dots” to

automatically generate type-specific kernels as needed

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example Templated

Density Map Kernel
template<class DENSITY, class VOLTEX>

__global__ static void

gaussdensity_fast_tex_norm(int natoms,

 const float4 * RESTRICT sorted_xyzr,

 const float4 * RESTRICT sorted_color,

 int3 numvoxels,

 int3 acncells,

 float acgridspacing,

 float invacgridspacing,

 const uint2 * RESTRICT cellStartEnd,

 float gridspacing, unsigned int z,

 DENSITY * RESTRICT densitygrid,

 VOLTEX * RESTRICT voltexmap,

 float invisovalue) {

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Example Templated

Density Map Kernel
template<class DENSITY, class VOLTEX>

__global__ static void

gaussdensity_fast_tex_norm(…) {

 … Triple-nested and unrolled inner loops here …

 DENSITY densityout;

 VOLTEX texout;

 convert_density(densityout, densityval1);

 densitygrid[outaddr] = densityout;

 convert_color(texout, densitycol1);

 voltexmap[outaddr] = texout;

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Net Result of QuickSurf Memory

Efficiency Optimizations

• Halved overall GPU memory use

• Achieved 1.5x to 2x performance gain:

– The “gather” density map algorithm keeps type

conversion operations out of the innermost loop

– Density map global memory writes reduced to half

– Multiple stages of Marching Cubes operate on smaller

input and output data types

– Same code path supports multiple precisions

• Users now get full GPU-accelerated QuickSurf in

many cases that previously triggered CPU-

fallback, all platforms (laptop/desk/super) benefit!

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

High Resolution HIV Surface

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

Acknowledgements

• Theoretical and Computational Biophysics

Group, University of Illinois at Urbana-

Champaign

• NCSA Blue Waters Team

• NCSA Innovative Systems Lab

• NVIDIA CUDA Center of Excellence,

University of Illinois at Urbana-Champaign

• The CUDA team at NVIDIA

• NIH support: 9P41GM104601

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Lattice Microbes: High‐performance stochastic simulation method
for the reaction‐diffusion master equation.
E. Roberts, J. E. Stone, and Z. Luthey‐Schulten.
J. Computational Chemistry 34 (3), 245-255, 2013.

• Fast Visualization of Gaussian Density Surfaces for Molecular
Dynamics and Particle System Trajectories. M. Krone, J. E. Stone,
T. Ertl, and K. Schulten. EuroVis Short Papers, pp. 67-71, 2012.

• Immersive Out-of-Core Visualization of Large-Size and Long-
Timescale Molecular Dynamics Trajectories. J. Stone, K. Vandivort,
and K. Schulten. G. Bebis et al. (Eds.): 7th International Symposium on
Visual Computing (ISVC 2011), LNCS 6939, pp. 1-12, 2011.

• Fast Analysis of Molecular Dynamics Trajectories with Graphics
Processing Units – Radial Distribution Functions. B. Levine, J.
Stone, and A. Kohlmeyer. J. Comp. Physics, 230(9):3556-3569, 2011.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Quantifying the Impact of GPUs on Performance and Energy Efficiency in

HPC Clusters. J. Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V.

Kindratenko, J. Stone, J Phillips. International Conference on Green Computing,

pp. 317-324, 2010.

• GPU-accelerated molecular modeling coming of age. J. Stone, D. Hardy, I.

Ufimtsev, K. Schulten. J. Molecular Graphics and Modeling, 29:116-125, 2010.

• OpenCL: A Parallel Programming Standard for Heterogeneous Computing.

J. Stone, D. Gohara, G. Shi. Computing in Science and Engineering, 12(3):66-

73, 2010.

• An Asymmetric Distributed Shared Memory Model for Heterogeneous

Computing Systems. I. Gelado, J. Stone, J. Cabezas, S. Patel, N. Navarro, W.

Hwu. ASPLOS ’10: Proceedings of the 15th International Conference on

Architectural Support for Programming Languages and Operating Systems, pp.

347-358, 2010.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• GPU Clusters for High Performance Computing. V. Kindratenko, J. Enos, G.

Shi, M. Showerman, G. Arnold, J. Stone, J. Phillips, W. Hwu. Workshop on

Parallel Programming on Accelerator Clusters (PPAC), In Proceedings IEEE

Cluster 2009, pp. 1-8, Aug. 2009.

• Long time-scale simulations of in vivo diffusion using GPU hardware.

E. Roberts, J. Stone, L. Sepulveda, W. Hwu, Z. Luthey-Schulten. In IPDPS’09:

Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed

Computing, pp. 1-8, 2009.

• High Performance Computation and Interactive Display of Molecular

Orbitals on GPUs and Multi-core CPUs. J. Stone, J. Saam, D. Hardy, K.

Vandivort, W. Hwu, K. Schulten, 2nd Workshop on General-Purpose

Computation on Graphics Pricessing Units (GPGPU-2), ACM International

Conference Proceeding Series, volume 383, pp. 9-18, 2009.

• Probing Biomolecular Machines with Graphics Processors. J. Phillips, J.

Stone. Communications of the ACM, 52(10):34-41, 2009.

• Multilevel summation of electrostatic potentials using graphics processing

units. D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

NIH BTRC for Macromolecular Modeling and Bioinformatics

http://www.ks.uiuc.edu/

Beckman Institute,
 U. Illinois at Urbana-Champaign

GPU Computing Publications
http://www.ks.uiuc.edu/Research/gpu/

• Adapting a message-driven parallel application to GPU-accelerated clusters.

J. Phillips, J. Stone, K. Schulten. Proceedings of the 2008 ACM/IEEE Conference

on Supercomputing, IEEE Press, 2008.

• GPU acceleration of cutoff pair potentials for molecular modeling

applications. C. Rodrigues, D. Hardy, J. Stone, K. Schulten, and W. Hwu.

Proceedings of the 2008 Conference On Computing Frontiers, pp. 273-282, 2008.

• GPU computing. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J.

Phillips. Proceedings of the IEEE, 96:879-899, 2008.

• Accelerating molecular modeling applications with graphics processors. J.

Stone, J. Phillips, P. Freddolino, D. Hardy, L. Trabuco, K. Schulten. J. Comp.

Chem., 28:2618-2640, 2007.

• Continuous fluorescence microphotolysis and correlation spectroscopy. A.

Arkhipov, J. Hüve, M. Kahms, R. Peters, K. Schulten. Biophysical Journal,

93:4006-4017, 2007.

