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Electrons in 
Vibrating Buckyball 

Cellular Tomography, 

 Cryo-electron Microscopy 

Poliovirus 

Ribosome Sequences 

VMD – “Visual Molecular Dynamics” 

Whole Cell Simulations 

• Visualization and analysis of: 

– molecular dynamics simulations 

– quantum chemistry calculations 

– particle systems and whole cells 

– sequence data 

• User extensible w/ scripting and plugins 

• http://www.ks.uiuc.edu/Research/vmd/ 
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GPU Accelerated Trajectory Analysis 

and Visualization in VMD 
GPU-Accelerated Feature Peak speedup vs. 

single CPU core 

Molecular orbital display 120x 

Radial distribution function 92x 

Electrostatic field calculation 44x 

Molecular surface display 40x 

Ion placement 26x 

MDFF density map synthesis  26x 

Implicit ligand sampling 25x 

Root mean squared fluctuation 25x 

Radius of gyration 21x 

Close contact determination 20x 

Dipole moment calculation 15x 
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Molecular Surface Visualization 

Poliovirus 

• Large biomolecular 

complexes are difficult to 

interpret with atomic detail 

graphical representations 

• Even secondary structure 

representations become 

cluttered 

• Surface representations are 

easier to use when greater 

abstraction is desired, but are 

computationally costly 

• Most surface display methods 

incapable of animating 

dynamics of large structures 

w/ millions of particles 
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• Displays continuum of structural detail: 

– All-atom models 

– Coarse-grained models 

– Cellular scale models 

– Multi-scale models: All-atom + CG,  Brownian + Whole Cell 

– Smoothly variable between full detail, and reduced resolution 

representations of very large complexes 

VMD “QuickSurf” Representation 

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and 
Particle System Trajectories.   

M. Krone, J. E. Stone, T. Ertl, K. Schulten. EuroVis Short Papers, pp. 67-71, 2012 
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• Uses multi-core CPUs and GPU acceleration to enable smooth 

real-time animation of MD trajectories  

• Linear-time algorithm, scales to millions of particles, as limited 

by memory capacity 

VMD “QuickSurf” Representation 

Satellite Tobacco Mosaic Virus Lattice Cell Simulations 
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VMD “QuickSurf” Representation 

All-atom HIV capsid simulations 
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Discretized lattice models derived 
from continuous model shown in 
VMD QuickSurf representation 

Continuous particle 
based model –  often 70 
to 300 million particles 

Lattice Microbes: High‐performance stochastic simulation method for the 
reaction‐diffusion master equation 

E. Roberts, J. E. Stone, and Z. Luthey‐Schulten. 
J. Computational Chemistry 34 (3), 245-255, 2013. 

QuickSurf Representation of  

Lattice Cell Models 
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QuickSurf Algorithm Overview 
• Build spatial acceleration 

data structures, optimize 

data for GPU 

• Compute 3-D density map, 

3-D volumetric texture map: 

 

 

• Extract isosurface for a 

user-defined density value 

3-D density map lattice, 
spatial acceleration grid, 

and extracted surface 
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QuickSurf Particle Sorting, Bead 

Generation, Spatial Hashing 
• Particles sorted into spatial acceleration grid: 

– Selected atoms or residue “beads” converted lattice 

coordinate system 

– Each particle/bead assigned cell index, sorted 

w/NVIDIA Thrust template library 

• Complication: 

– Thrust allocates GPU mem. on-demand, no recourse 

if insufficient memory, have to re-gen QuickSurf data 

structures if caught by surprise! 

• Workaround: 

– Pre-allocate guesstimate workspace for Thrust 

– Free the Thrust workspace right before use 

– Newest Thrust allows user-defined allocator code…  

Coarse resolution 
spatial acceleration grid 
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Spatial Hashing Algorithm Steps/Kernels 

1) Compute bin index for each atom, 
store to memory w/ atom index 

QuickSurf uniform 
grid spatial 

subdivision data 
structure 

2) Sort list of  bin and atom index tuples 
(1) by bin index (thrust kernel) 

3) Count atoms in each bin (2) using a 
parallel prefix sum, aka scan, 
compute the destination index for each 
atom, store per-bin starting index and 
atom count (thrust kernel) 

4) Write atoms to the output indices 
computed in (3), and we have 
completed the data structure 
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QuickSurf and Limited GPU Global Memory 
• High resolution molecular surfaces require a fine lattice spacing 

• Memory use grows cubically with decreased lattice spacing 

• Not typically possible to compute a surface in a single pass, so we 

loop over sub-volume “chunks” until done… 

• Chunks pre-allocated and sized to GPU global mem capacity to 

prevent unexpected memory allocation failure while animating… 

• Complication: 

– Thrust allocates GPU mem. on-demand, no recourse if insufficient memory, 

have to re-gen QuickSurf data structures if caught by surprise! 

• Workaround: 

– Pre-allocate guesstimate workspace for Thrust 

– Free the Thrust workspace right before use 

– Newest Thrust allows user-defined allocator code…  
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Padding optimizes global 
memory performance, 
guaranteeing coalesced 
global memory accesses Grid of thread blocks 

Small 8x8 thread 

blocks afford large  

per-thread register 

count, shared 

memory 

              
QuickSurf 3-D density map 

decomposes into thinner 3-D 
slabs/slices (CUDA grids) 

… 0,0 0,1 

1,1 

… … 

… 

… 

Inactive threads, 
region of 
discarded 
output 

Each thread 

computes 

one or more 

density map 

lattice points 

Threads 
producing 
results that 
are used 1,0 

…  

Chunk 2 

Chunk 1 

Chunk 0 

Large volume 

computed in 

multiple passes, or 

multiple GPUs 

QuickSurf  Density Parallel Decomposition 
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QuickSurf Density Map Algorithm 

• Spatial acceleration grid cells are 

sized to match the cutoff radius for  

the exponential, beyond which density 

contributions are negligible 

• Density map lattice points computed 

by summing density contributions 

from particles in 3x3x3 grid of 

neighboring spatial acceleration cells 

• Volumetric texture map is computed 

by summing particle colors 

normalized by their individual density 

contribution 

3-D density map 
lattice point and 
the neighboring 

spatial acceleration 
cells it references 
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QuickSurf Density Map 

 Kernel Optimizations 

• Compute reciprocals, prefactors, other math on the host 

CPU prior to kernel launch 

• Use of intN and floatN vector types in CUDA kernels 

for improved global memory bandwidth 

• Thread coarsening: one thread computes multiple 

output densities and colors 

• Input data and register tiling: share blocks of input, 

partial distances in regs shared among multiple outputs 

• Global memory (L1 cache) broadcasts: all threads in 

the block traverse the same atom/particle at the same 

time  
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QuickSurf Density Map Kernel Snippet… 
for (zab=zabmin; zab<=zabmax; zab++) { 

    for (yab=yabmin; yab<=yabmax; yab++) { 

      for (xab=xabmin; xab<=xabmax; xab++) { 

        int abcellidx = zab * acplanesz + yab * acncells.x + xab; 

        uint2 atomstartend = cellStartEnd[abcellidx]; 

        if (atomstartend.x != GRID_CELL_EMPTY) { 

          for (unsigned int atomid=atomstartend.x; atomid<atomstartend.y; atomid++) { 

            float4 atom = sorted_xyzr[atomid]; 

            float dx = coorx - atom.x;            float dy = coory - atom.y;         float dz = coorz - atom.z; 

            float dxy2 = dx*dx + dy*dy; 

            float r21 = (dxy2 + dz*dz) * atom.w; 

            densityval1 += exp2f(r21); 

             /// Loop unrolling and register tiling benefits begin here…… 

            float dz2 = dz + gridspacing; 

            float r22 = (dxy2 + dz2*dz2) * atom.w; 

            densityval2 += exp2f(r22); 

            /// More loop unrolling …. 
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QuickSurf Marching Cubes 

Isosurface Extraction 
• Isosurface is extracted from each density map “chunk”, and 

either copied back to the host, or rendered directly out of 

GPU global memory via CUDA/OpenGL interop 

• All MC memory buffers are pre-allocated to prevent 

significant overhead when animating a simulation trajectory 

              
QuickSurf 3-D density map 

decomposes into thinner 3-D 
slabs/slices (CUDA grids) 

…  

Chunk 2 

Chunk 1 

Chunk 0 

Large volume 

computed in 

multiple passes 
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Brief Marching Cubes Isosurface 

Extraction Overview 
• Given a 3-D volume of scalar density values and a requested 

surface density value, marching cubes computes vertices and 

triangles that compose the requested surface triangle mesh  

• Each MC “cell” (a cube with 8 density values at its vertices) 

produces a variable number of output vertices depending on how 

many edges of the cell contain the requested isovalue… 

• Use scan() to compute the output indices so that each worker 

thread has conflict-free output of vertices/triangles 
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Brief Marching Cubes Isosurface 

Extraction Overview 
• Once the output vertices have been computed and stored, we 

compute surface normals and colors for each of the vertices 

• Although the separate normals+colors pass reads the density map 

again, molecular surfaces tend to generate a small percentage of 

MC cells containing triangles, we avoid wasting interpolation work 

• We use CUDA tex3D() hardware 3-D texture mapping: 

– Costs double the texture memory and a one copy from GPU global memory 

to the target texture map with cudaMemcpy3D() 

– Still roughly 2x faster than doing color interpolation without the texturing 

hardware, at least on GT200 and Fermi hardware 

– Kepler has new texture cache memory path that may make it feasible to do 

our own color interpolation and avoid the use of extra 3-D texture memory 

and associated copy, with acceptable performance 
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QuickSurf Marching Cubes 

Isosurface Extraction 
• Our optimized MC implementation computes per-vertex 

surface normals, colors, and outperforms the NVIDIA SDK 

sample by a fair margin on Fermi GPUs 

• Complications: 

– Even on a 6GB Quadro 7000, GPU global memory is under great 

strain when working with large molecular complexes, e.g. viruses 

– Marching cubes involves a parallel prefix sum (scan) to compute 

target indices for writing resulting vertices 

– We use Thrust for scan, has the same memory allocation issue 

mentioned earlier for the sort, so we use the same workaround 

– The number of output vertices can be huge, but we rarely have 

sufficient GPU memory for this – we use a fixed size vertex output 

buffer and hope our heuristics don’t fail us 
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QuickSurf Performance 

GeForce GTX 580 
Molecular 

system 

Atoms Resolution Tsort Tdensity TMC 

 

# vertices FPS 

MscL 111,016 1.0Å 0.005 0.023 0.003 0.7 M 28 

STMV capsid 147,976 1.0Å 0.007 0.048 0.009 2.4 M 13.2 

Poliovirus 

capsid 

754,200 1.0Å 0.01 0.18 0.05 9.2 M 3.5 

STMV w/ water 955,225 1.0Å 0.008 0.189 0.012 2.3 M 4.2 

Membrane 2.37 M 2.0Å 0.03 0.17 0.016 5.9 M 3.9 

Chromatophore 9.62 M 2.0Å 0.16 0.023 0.06 11.5 M 3.4 

Membrane w/ 

water 

22.77 M 4.0Å 

 

4.4 0.68 0.01 1.9 M 0.18 

Fast Visualization of Gaussian Density Surfaces for Molecular Dynamics and 
Particle System Trajectories.   

M. Krone, J. E. Stone, T. Ertl, K. Schulten. EuroVis Short Papers, pp. 67-71, 2012 
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Extensions and Analysis Uses for QuickSurf 

Triangle Mesh 
• Curved PN triangles: 

– We have performed tests with post-processing the resulting triangle 

mesh and using curved PN triangles to generate smooth surfaces 

with a larger grid spacing, for increased performance 

– Initial results demonstrate some potential, but there can be 

pathological cases where MC generates long skinny triangles, 

causing unsightly surface creases 

• Analysis uses (beyond visualization): 

– Minor modifications to the density map algorithm allow rapid 

computation of solvent accessible surface area by summing the 

areas in the resulting triangle mesh 

– Modifications to the density map algorithm will allow it to be used 

for MDFF (molecular dynamics flexible fitting) 

– Surface triangle mesh can be used as the input for computing the 

electrostatic potential field for mesh-based algorithms 
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Challenge: Support Interactive QuickSurf for 

Large Structures on Mid-Range GPUs 
• Structures such as HIV 

initially needed large (6GB) 

GPU memory to generate 

fully-detailed surface 

renderings 

• Goals and approach:  

– Avoid slow CPU-fallback! 

– Incrementally change 

algorithm phases to use more 

compact data types, while 

maintaining performance 

– Specialize code for different 

performance/memory 

capacity cases 
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Improving QuickSurf Memory Efficiency 

• Both host and GPU memory capacity limitations are a 

significant concern when rendering surfaces for virus 

structures such as HIV or for large cellular models which 

can contain hundreds of millions of particles 

• The original QuickSurf implementation used single-

precision floating point for output vertex arrays and 

textures 

• Judicious use of reduced-precision numerical 

representations, cut the overall memory footprint of the 

entire QuickSurf algorithm to half of the original 

– Data type changes made throughout the entire chain from density 

map computation through all stages of Marching Cubes 
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Supporting Multiple Data Types for  

QuickSurf Density Maps 

and Marching Cubes Vertex Arrays 

• The major algorithm components of QuickSurf are now 

used for many other purposes: 

– Gaussian density map algorithm now used for MDFF Cryo EM 

density map fitting methods in addition to QuickSurf 

– Marching Cubes routines also used for Quantum Chemistry 

visualizations of molecular orbitals  

• Rather than simply changing QuickSurf to use a particular 

internal numerical representation, it is desirable to instead 

use CUDA C++ templates to make type-generic versions 

of the key objects, kernels, and output vertex arrays 

• Accuracy-sensitive algorithms use high-precision data 

types, performance and memory capacity sensitive cases 

use quantized or reduced precision approaches  
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Minimizing the Impact of Generality on  

QuickSurf Code Complexity 

• A critical factor in the simplicity of supporting multiple 

QuickSurf data types arises from the so-called “gather” 

oriented algorithm we employ 

– Internally, all in-register arithmetic is single-precision 

– Data conversions to/from compressed or reduced precision data 

types are performed on-the-fly as needed 

• Small inlined type conversion routines are defined for each 

of the cases we want to support 

• Key QuickSurf kernels are genericized using C++ template 

syntax, and the compiler “connects the dots” to 

automatically generate type-specific kernels as needed  
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Example Templated  

Density Map Kernel 
template<class DENSITY, class VOLTEX> 

__global__ static void 

gaussdensity_fast_tex_norm(int natoms, 

                                              const float4 * RESTRICT sorted_xyzr, 

                                              const float4 * RESTRICT sorted_color, 

                                              int3 numvoxels, 

                                              int3 acncells, 

                                             float acgridspacing, 

                                             float invacgridspacing, 

                                             const uint2 * RESTRICT cellStartEnd, 

                                             float gridspacing, unsigned int z, 

                                             DENSITY * RESTRICT densitygrid, 

                                             VOLTEX * RESTRICT voltexmap, 

                                            float invisovalue) { 
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Example Templated  

Density Map Kernel 
template<class DENSITY, class VOLTEX> 

__global__ static void 

gaussdensity_fast_tex_norm( …  ) { 

  

  … Triple-nested and unrolled inner loops here … 

 

  DENSITY densityout; 

  VOLTEX texout; 

  convert_density(densityout, densityval1); 

  densitygrid[outaddr          ] = densityout; 

  convert_color(texout, densitycol1); 

  voltexmap[outaddr          ] = texout; 
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Net Result of QuickSurf Memory 

Efficiency Optimizations 

• Halved overall GPU memory use 

• Achieved 1.5x to 2x performance gain: 

– The “gather” density map algorithm keeps type 

conversion operations out of the innermost loop 

– Density map global memory writes reduced to half 

– Multiple stages of Marching Cubes operate on smaller 

input and output data types 

– Same code path supports multiple precisions 

• Users now get full GPU-accelerated QuickSurf in 

many cases that previously triggered CPU-

fallback, all platforms (laptop/desk/super) benefit! 
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High Resolution HIV Surface 
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