
NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

GPU Particle-Particle Algorithms:
Non-bonded Force Calculation

David J. Hardy

Theoretical and Computational Biophysics Group
Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign
http://www.ks.uiuc.edu/Research/gpu/

GPU Programming for Molecular Modeling Workshop,
University of Illinois at Urbana-Champaign, August 2-4, 2013

http://www.ks.uiuc.edu/Research/gpu/
http://www.ks.uiuc.edu/Research/gpu/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Non-bonded Potential Functions

Uelec =
�

i<j

C
qiqj

|rj − ri|

ULJ =
�

i<j

�ij

�� rmin
ij

|rj − ri|

�12
− 2

� rmin
ij

|rj − ri|

�6
�

rmin
ij =

1

2

�
rmin
i + rmin

j

�

�ij =
√
�i�j

Forces obtained from gradients of potential functions.

electrostatics:

van der Waals:

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Limit Interaction Range

electrostatics:

van der Waals:

Cutoff distance a with smoothing S(r) = 0, r > a:

ULJ =
�

i<j

�ij

��rmin
ij

rij

�12
− 2

�rmin
ij

rij

�6
�
SLJ(rij)

Uelec =
�

i<j

Cqiqj
�S(rij)

rij
+

1− S(rij)

rij

�

Short-range part, calculate exactly

Long-range part, calculate approximately

Use methods like PME (particle-mesh Ewald)
or MSM (multilevel summation method)

O(a3N)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Effective Use of GPU
• Large amount of fine-grained parallelism

- Keep 10,000+ threads busy with consistent calculations

• Efficient memory access patterns

- Need good understanding of memory hierarchy

✦ Register file, shared memory cache — tradeoff with thread block scheduling

✦ Constant memory, texture memory — read-only, distinctive access patterns

✦ Main memory — slow access, use coalesced reads and writes

- Adapt data to memory constraints

• Using suitable control structures and operations

- Reduce branch divergence, thread synchronization

- Simplify loop control logic, indexing arithmetic

- Appropriate use of special function unit

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

• Particle-particle is more challenging because:

- Irregularity makes it harder to map work to threads

- Less fine-grained parallelism available:

✦ N particles, M grid points:

✦ particle-grid vs. particle-particle interactions

- Amount of fine-grained parallelism reduced by
factor of 20 to 200

• Particle-particle interactions require more data
per interaction

Comparison with Particle-Grid Algorithms

10N ≤ M ≤ 100N

MN 1
2N

2

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

cutoff

• Sum interactions within cutoff distance a

- Perform spatial hashing of atoms into grid cells

- For every grid cell, for each atom:

✦ Loop over atoms in each neighboring cell

✦ If , sum potential energy, virial, and atomic forces

- Use Newton’s 3rd Law:

Short-range Non-bonded Interactions

r2ij < a2

fji = −fij

If cutoff distance is no bigger than cell,
then loop over nearest neighbors

NAMD terminology:
grid cells are “patches”
spatial (re-)hashing is “atom migration”

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Non-bonded Exclusions

• Self interactions are excluded

• Typically exclude pairs of atoms that are covalently
bonded to each other or to a common atom

• Possible approaches:

- Ignore and correct later

✦ But this can cause large numerical errors!

- Detect during evaluation and skip

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Algorithmic Enhancements

• Maintain pair lists

- For each atom i, keep list of atoms j within cutoff

- Extend cutoff distance (a+δ), no update needed until
an atom moves distance δ/2

• Interpolation tables for interactions

- Avoid erfc and exp functions needed for PME

- Avoid rsqrt (on x86)

- Avoid additional branching and calculation for van der
Waals switching function

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Designing GPU Kernels for
Short-range Non-bonded Forces

• Calculate both electrostatics and van der Waals interactions
(need atom coordinates and parameters)

• Spatial hashing of atoms into bins (best done on CPU)

• Should we use pairlists?

- Reduces computation, increases and delocalizes memory access

• Should we make use of Newton’s 3rd Law to reduce work?

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Designing GPU Kernels for
Short-range Non-bonded Forces

• How do we map work to the GPU threads?

- Fine-grained: assign threads to sum forces on atoms

- Extremely fine-grained: assign threads to pairwise
interactions

• How do we decompose work into thread blocks?

- Non-uniform: assign thread blocks to bins

- Uniform: assign thread blocks to entries of the force matrix

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Designing GPU Kernels for
Short-range Non-bonded Forces

• Is single precision enough? Do we need double precision?

• How might we handle non-bonded exclusions?

- Detect and omit excluded pairs (use bit masks)

- Ignore, fix with CPU (use force clamping)

• How do we compute potential energies or the virial?

• How do we calculate expensive functional forms?

- PME requires erfc(): is it faster to use an interpolation table?

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Short-range Parallelization

• Spatial decomposition

• Assign grid cells to processors

• Maps naturally to 3D mesh topology

- Communication with nearest neighbors

NAMD sends
positions

downstream,
then sends

forces
upstream

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

 NAMD hybrid decomposition
Kale, et al., J. Comp. Phys. 151:283-312, 1999

• Decompose data
spatially into patches

• Decompose work
into concurrent
compute objects

• Compute objects
facilitate iterative,
measurement-based
load balancing

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

NAMD Non-bonded Forces on GPU
• Decompose work into pairs of “patches” (bins), identical to NAMD structure.
• Each patch-pair is calculated by an SM (thread block).

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constant
Memory
Exclusions

8kB cache 8kB cache

32-way SIMD Multiprocessor
32-256 multiplexed threads

768 MB Main Memory, no cache, 300+ cycle latency

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Each Block Gets a Pair of Patches
• Store block-level constants in shared memory to save registers.
• Structure patch_pair is 16-byte aligned.
• To coalesce read have each thread load one int from global

memory and write it into a union in shared memory.

 #define myPatchPair pp.pp
 __shared__ union { patch_pair pp; unsigned int i[PPSIZE]; } pp;
 __shared__ bool same_patch;
 __shared__ bool self_force;

 if (threadIdx.x < (sizeof(patch_pair)>>2)) {
 unsigned int tmp = ((unsigned int*)patch_pairs)[
 (sizeof(patch_pair)>>2)*blockIdx.x+threadIdx.x];
 pp.i[threadIdx.x] = tmp;
 }
 __syncthreads();
 // now all threads can access myPatchPair safely

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

#define BLOCK_SIZE 128
#define SHARED_SIZE 32

struct __align__(16) atom { // must be multiple of 16!
 float3 position;
 float charge;
};

struct __align__(16) atom_param { // must be multiple of 16!
 int vdw_type;
 int index;
 int excl_index;
 int excl_maxdiff; // maxdiff == 0 -> only excluded from self
};

__shared__ union {
 atom d[SHARED_SIZE];
 unsigned int i[4*SHARED_SIZE];
 float f[4*SHARED_SIZE];
} jpqu;

__shared__ union {
 atom_param d[SHARED_SIZE];
 unsigned int i[4*SHARED_SIZE];
} japu;

Right-Sized Atom Data Structures

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

CPU Force Interpolation

• Want to avoid calculating erfc(), sqrt(), branches for
switching functions.

• U(r2) = ε(σ12A(r2) + σ6B(r2)) + qqC(r2)
• F = -2 r U’(r2)
• Piecewise cubic interpolation of A,B,C.
• Need more windows at small r2, so use exponent and

high-order mantissa bits in floating point format to
determine window.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Texture Unit Force Interpolation

• Bit manipulation of floats is not possible.
• But rsqrt() is implemented in hardware.
• F(r -1)/r = ε(σ12A(r -1) + σ6B(r -1)) + qqC(r -1)
• F = r F(r -1)/r
• Piecewise linear interpolation of A,B,C is

equivalent to linear interpolation of force F
– since r (a r -1 + b) = a + r b

• Texture unit hardware is a perfect match.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Constant Memory Exclusion Tables

• Need to exclude bonded pairs of atoms.
– Also apply correction for PME electrostatics.

• Exclusions determined by using atom indices to
bit flags in exclusion arrays.

• Repetitive molecular structures limit unique
exclusion arrays.

• If table is too large for constant memory, overflow
is handled by reading from main memory.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Overview of Inner Loop

• Calculate forces on atoms in registers due to
atoms in shared memory.
– Ignore Newton’s 3rd law (reciprocal forces).
–Do not sum forces for atoms in shared memory.

• All threads access the same shared memory atom,
allowing shared memory broadcast.

• Only calculate forces for atoms within cutoff
distance (roughly 10% of pairs).

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

texture<float4> force_table;
__constant__ unsigned int exclusions[];
__shared__ atom jatom[];
atom iatom; // per-thread atom, stored in registers
float4 iforce; // per-thread force, stored in registers
for (int j = 0; j < jatom_count; ++j) {
 float dx = jatom[j].x - iatom.x; float dy = jatom[j].y - iatom.y; float dz = jatom[j].z - iatom.z;
 float r2 = dx*dx + dy*dy + dz*dz;
 if (r2 < cutoff2) {
 float4 ft = texfetch(force_table, 1.f/sqrt(r2));
 bool excluded = false;
 int indexdiff = iatom.index - jatom[j].index;
 if (abs(indexdiff) <= (int) jatom[j].excl_maxdiff) {
 indexdiff += jatom[j].excl_index;
 excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);
 }
 float f = iatom.half_sigma + jatom[j].half_sigma; // sigma
 f *= f*f; // sigma^3
 f *= f; // sigma^6
 f *= (f * ft.x + ft.y); // sigma^12 * fi.x - sigma^6 * fi.y
 f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon;
 float qq = iatom.charge * jatom[j].charge;
 if (excluded) { f = qq * ft.w; } // PME correction
 else { f += qq * ft.z; } // Coulomb
 iforce.x += dx * f; iforce.y += dy * f; iforce.z += dz * f;
 iforce.w += 1.f; // interaction count or energy
 }
}

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

Force Interpolation

Exclusions

Parameters

Accumulation

Nonbonded Forces
 CUDA Code

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

NAMD CUDA Kernel Evolution

• Original — minimize main memory access

- Enough threads to load all atoms in patch

- Needed two atoms per thread to fit

- Swap atoms between shared memory and registers

• Revised — multiple blocks for concurrency

- 64 threads/atoms per block (now 128 for Fermi)

- Loop over shared memory atoms in sets of 16

- Two blocks for each patch pair

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Further Kernel Developments

• Production features in NAMD 2.7b3 release (7/6/2010):

- Full electrostatics with PME

- 1-4 exclusions

- Constant-pressure simulation

- Improved force accuracy:

✦ Patch-centered atom coordinates

✦ Increased precision of force interpolation

• Performance enhancements in NAMD 2.7b4 release (9/17/2010):

- Sort blocks in order of decreasing work

- Recursive bisection within patch on 32-atom boundaries

- Warp-based pair lists based on sorted atoms

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Sorting Blocks

• Sort patch pairs by increasing distance

• Equivalent to sort by decreasing work

• Slower blocks start first, fast blocks last

• Reduces idle time, total runtime of grid

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Sorting Atoms

• Reduce warp divergence on cutoff tests

• Group nearby atoms in the same warp

• One option is space-filling curve

• Used recursive bisection instead

- Split only on 32-atom boundaries

- Find major axis, sort, split, repeat…

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Warp-based Pairlists

• List generation

- Load 16 atoms into shared memory

- Any atoms in this warp within pairlist distance?

- Combine all (4) warps as bits in char and save

• List use

- Load set of 16 atoms if any bit is set in list

- Only calculate if this warp’s bit is set

- Cuts kernel runtime by 50%

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Multilevel Summation Method
• Fast algorithm for N-body electrostatics

• Calculates sum of smoothed pairwise potentials interpolated
from a hierarchal nesting of grids

• Advantages over PME (particle-mesh Ewald) and/or FMM (fast
multipole method):

- Algorithm has linear time complexity

- Allows non-periodic or periodic boundaries

- Produces continuous forces for dynamics (advantage over FMM)

- Avoids 3D FFTs for better parallel scaling (advantage over PME)

- Permits polynomial splittings (no erfc() evaluation, as used by PME)

- Spatial separation allows use of multiple time steps

- Can be extended to other types of pairwise interactions

Skeel, et al., J. Comp. Chem. 23:673-684, 2002.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

MSM Main Ideas

=

+

+

atoms

h-grid

2h-grid

Split the 1/r potential Interpolate the smoothed potentials

a 2a

.

.

.
.
.
.

• Split the 1/r potential into a short-range cutoff part plus smoothed parts that
are successively more slowly varying. All but the top level potential are cut off.

• Smoothed potentials are interpolated from successively coarser grids.

• Finest grid spacing h and smallest cutoff distance a are doubled at each
successive level.

1/r

r0

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

MSM Calculation
force

exact
short-range

part

interpolated
long-range

part
+=

Computational Steps

short-range cutoff

interpolationanterpolation

h-grid cutoff

2h-grid cutoff

4h-grid

restriction

restriction

prolongation

prolongationlong-range
parts

positions
charges forces

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Multilevel Summation on the GPU
(for electrostatic potential maps)

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for 1.5 M atoms.
Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

Accelerate short-range cutoff and lattice cutoff parts

Multilevel summation of electrostatic potentials using graphics processing units.
D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

MSM Grid Interactions
• Potential summed from grid point charges within cutoff

• Uniform spacing enables distance-based interactions to be
precomputed as stencil of “weights”

• Weights at each level are identical up to scaling factor (!)

• Calculate grid potential as 3D convolution of weights with charges

- stencil size up to 23x23x23

Cutoff radius

Accumulate potential

Sphere of
grid point
charges

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

MSM Grid Interactions on GPU
• Store weights in constant memory (padded up to next multiple of 4)

• Block of 64 threads calculates 4x4x4 region of potentials (stored contiguously)

• Pack all charge regions over all levels into 1D array (grid padded with zero charge)

• Store map of offsets to each level in constant memory

• Each thread block loops over surrounding charge regions (load into shared memory)

• Calculate all grid levels concurrently (avoid running out of work at upper grid levels)

Shared memory

Global memory Constant memory

Grid
potential
regions

Each thread block cooperatively loads
regions of grid charge into shared memory,
multiply by weights from constant memory

Grid
charge
regions

Stencil of weights

Subset of grid
charge regions

Hardy, et al., J. Paral. Comp. 35:164-177, 2009.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Apply Weights Using Sliding Window

• Thread block must collectively use same value from
constant memory

• Read 8x8x8 grid charges (8 regions) into shared memory

• Window of size 4x4x4 maintains same relative distances

• Slide window by 4 shifts along each dimension

