

Computer Simulations of DNA Driven Nanoparticle Assemblies

TCBG GPU WORKSHOP

08.05.2013

Fernando Vargas-Lara

Jack F. Douglas
Materials Science &
Engineering Division

Francis W. Starr Physics Department Wesleyan University

1. GPU Challenges

CAUTION: All the pictures and movies have been made using VMD

GPU Challenges Short term goals

- 1. Migrate ssDNA simple model from C to GPU
- 2. Translate ZENO from Fortran to GPU
- 3. Get computing time on TITAN to test 1 &2

Long term goals

- 1. Run a megaton of DNA-grafted NPs to study the dynamics of crystallization
- 2. Determine elec. & mech. properties of large systems using ZENO.
- 3. Study other MD models using GPU technology

2. Description of the Problem

DNA is a complex molecule!

Starr & Sciortino, J. Phys. Condens. Matt. 18, L347 (2006)

Parameterized to reproduce the **rigidity** and the **natural self-assembly** double-stranded DNA

Interaction Potentials

- All Pair sites via truncating and shifting LJ
- Neighboring monomers via <u>FENE</u>
- To model the characteristic rigidity:

$$V_L = k_{linear}[1 + \cos(\theta)]$$

 Small spheres carry A,C,G,T identities

At low temperature, two complementary strands self-assembly forming dsDNA

Fraction of bonds (f) as a function of the temperature

$$f = 1 - \frac{1}{1 + e^{\frac{\Delta H - T\Delta S}{T}}}$$

The transition temperature T_D , is the temperature at which half of the bonds that hold the dsDNA permanent intact.

Nanoparticle Core Model

Nanoparticle with:

✓ Spherical Symmetry

Nanoparticle Core Model

Nanoparticle with:

- √ Spherical Symmetry
- ✓ Regular Solid Icosahedron Dodecahedron Icosidodecahedron

A Monte Carlo numerical path integrator

(Integrates Laplace's equation with Dirichlet's b.c)

Probabilistic definition of R_H

$$\mathbf{R}_{\mathsf{H}} = \lim_{|r| \to \infty} (|r| \boldsymbol{P_r})$$

Douglas & Zhou & Hubbard, Phys. Rev. E, 49,5319,(1994)

Computes: friction coefficient, hydrodynamic radius, radius of gyration, capacity, polarizabilty tensor, intrinsic conductivity, intrinsic viscosity...of arbitrarily shaped objects

3. Key Algorithms

Key Algorithms

ssDNA Model

- ✓ Molecular Dynamic Simulations (NVT)
- ✓ Velocity-Verlet method to integrate Newton's Equation
- ✓ Periodic Boundary Conditions
- ✓ Neighbour List
- ✓ Nose-Hoover thermostat
- ✓ MPI parallel computing

ZENO

✓ Monte Carlo

4. Research Contribution

Some

stals

More applications of the model

Soft Tacos

Hard Tacos

Burritos

