Structure, dynamics and assembly mechanism of the capsid of HIV-1 virus by solid state NMR, Transmission Electron Microscopy and Monte Carlo simulation

Bright field TEM image of negatively Stained capsid protein assembly in vitro **Bo Chen**

20

60

³C (ppm)

60 40 20 0 ¹³C (ppm) NMR 2D ¹³C-¹³C correlation spectrum of capsid protein assembly in vitro

A novel coarse grain model captures The backbone structure of protein

helix 11

helix 10

helix 8

helix 7B helix 7

helix 4

helix 5

helix 6

UIUC Beckman Institute

AUG 2013

helix 12

helix 9

helix 2

helix 3

helix '

Outline

- 1. Background of the problem
- 2. Model set up
- 3. What we did
- 4. What can we do
- 5. What we want to achieve

The capsid is essential to HIV virus

Proposed structure of capsid: Ganser *et al.*, Science (1999) Facts ~120 nm 25 million 33.3 million

No Cure !!!

Pornillos et al., Cell (2009)

Cameron Slayden

Ganser-Pornillos *et al.*, J. Virology (2004)

Coexistence of rigid and flexible regions of CA

Bo Chen and Robert Tycko, Protein Science (2009)

CA assembly in 2-dimension

Attractive Interaction

$$f(\theta) = \begin{cases} \frac{|\theta - \theta_0|}{\theta_{\max}} - 1, |\theta - \theta_0| \le \theta_{\max} \\ 0, |\theta - \theta_0| > \theta_{\max} \end{cases}$$

$$V(\theta, r) = f(\theta) \cdot g(r)$$

$$g(r) = 4\varepsilon_0 \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$$

bindingstrength=
$$4\frac{\varepsilon_0}{RT}$$

Repulsive Interaction: No collision & overlap

Metropolis Criterion: rand_num < $exp(-\Delta E/kT)$

Spontaneous assembly in 2D

Stability of various oligomeric intermediates

Driving forces and phase diagram of self-assembly

Self-assembly is not nucleated by template

Bo Chen et al. Biophysical Journal 2011

Semi 3D simulation of self-assembly

Correlate assembly mechanism with protein structure

Current Status

Better collision detection algorithm improves the efficiency 10-fold
Sorted Verlet list(pair list) improves the efficiency 170-180%.
Openmp helps the best. Multi-threading with dynamic workload schedule.
200 subunits assembly in 4 days on one Xeon E5 1620 (4 core 3.5 GHz).
Goal => the need for speed

10x speed to boost the system size \sim 2000 or more

Simulate assembly of different curvatures based on experimental constraints. Simulate gag polyprotein assembly, the immature capsid lattice.

OPENMP Parallelization

New Hope

Movie

Acknowledgement

- Robert Tycko
- Jeff Webber
- UCF In-house grant
- AFOSR Young Investigator Award

Seeded growth

