GPU Particle-Grid Methods: Electrostatics

John Stone
Theoretical and Computational Biophysics Group
Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/gpu/

Workshop on GPU Programming for Molecular Modeling,
Beckman Institute for Advanced Science and Technology,
University of Illinois at Urbana-Champaign, August 7, 2010
Multiple Debye-Hückel Electrostatics

• Part of Poisson-Boltzmann solver in the popular APBS package

• Method: compute electrostatic potentials at grid points on boundary faces of box containing molecule

• Screening function:

\[S(r) = \frac{e^{-\kappa(r-\sigma_j)}}{1 + \kappa \sigma_j} \]
MDH Kernel (CUDA)

```c
extern shared float smem[];

int igrid = (blockIdx.x * blockDim.x) + threadIdx.x;  int lsize = blockDim.x; int lid = threadIdx.x;
float lgx = gx[igrid]; float lgy = gy[igrid]; float lgz = gz[igrid]; float v = 0.0f;
for (int jatom = 0; jatom < natoms; jatom+=lsize) {
    syncthreads();
    if ((jatom + lid) < natoms) {
        smem[lid] = ax[jatom + lid];
        smem[lid + lsize] = ay[jatom + lid];
        smem[lid + 2 * lsize] = az[jatom + lid];
        smem[lid + 3 * lsize] = charge[jatom + lid];
        smem[lid + 4 * lsize] = size[jatom + lid];
    }
    syncthreads();
    if ((jatom + lsize) > natoms) lsize = natoms - jatom;
    for (int i = 0; i < lsize; i++) {
        float dx = lgx - smem[i];
        float dy = lgy - smem[i + lsize];
        float dz = lgz - smem[i + 2 * lsize];
        float dist = sqrtf(dx*dx + dy*dy + dz*dz);
        v += smem[i+3*lsize] * expf(-xkappa * (dist - smem[i+4*lsize])) / (1.0f + xkappa * smem[i+4*lsize]) * dist;
    }
}
val[igrid] = pre1 * v;
```

Collectively load atoms from global memory into shared memory

Loop over all all atoms in shared memory accumulating potential contributions into grid points
Electrostatic Potential Maps

- Electrostatic potentials evaluated on 3-D lattice:

$$V_i = \sum_j \frac{q_j}{4\pi\varepsilon_0|\mathbf{r}_j - \mathbf{r}_i|}$$

- Applications include:
 - Ion placement for structure building
 - Time-averaged potentials for simulation
 - Visualization and analysis

Isoleucine tRNA synthetase
Direct Coulomb Summation (DCS) Algorithm Detail

- Each lattice point accumulates electrostatic potential contribution from all atoms:
 \[\text{potential}[j] += \frac{\text{atom}[i].\text{charge}}{r_{ij}} \]
DCS Computational Considerations

• Attributes of DCS algorithm for computing electrostatic maps:
 – Highly data parallel
 – Starting point for more sophisticated algorithms
 – Single-precision FP arithmetic is adequate for intended uses
 – Numerical accuracy can be further improved by compensated summation, spatially ordered summation groupings, or with the use of double-precision accumulation
 – Interesting test case since potential maps are useful for various visualization and analysis tasks

• Forms a template for related spatially evaluated function summation algorithms in CUDA
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,
 int numatoms) {
 int i,j,n;
 int atomarrdim = numatoms * 4;
 for (j=0; j<grid.y; j++) {
 float y = gridspacing * (float) j;
 for (i=0; i<grid.x; i++) {
 float x = gridspacing * (float) i;
 float energy = 0.0f;
 float energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;
 for (n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom
 float dx = x - atoms[n];
 float dy = y - atoms[n+1];
 float dz = z - atoms[n+2];
 energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);
 }
 }
 }
}

Single Slice DCS: Simple (Slow) C Version

void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,
 int numatoms) {
 int i,j,n;
 int atomarrdim = numatoms * 4;
 for (j=0; j<grid.y; j++) {
 float y = gridspacing * (float) j;
 for (i=0; i<grid.x; i++) {
 float x = gridspacing * (float) i;
 float energy = 0.0f;
 float energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;
 for (n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom
 float dx = x - atoms[n];
 float dy = y - atoms[n+1];
 float dz = z - atoms[n+2];
 energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);
 }
 }
 }
}
DCS Algorithm Design Observations

- Electrostatic maps used for ion placement require evaluation of ~20 potential lattice points per atom for a typical biological structure
- Atom list has the smallest memory footprint, best choice for the inner loop (both CPU and GPU)
- Lattice point coordinates are computed on-the-fly
- Atom coordinates are made relative to the origin of the potential map, eliminating redundant arithmetic
- Arithmetic can be significantly reduced by precalculating and reusing distance components, e.g. create a new array containing X, Q, and \(dy^2 + dz^2 \), updated on-the-fly for each row (CPU)
- Vectorized CPU versions benefit greatly from SSE instructions
An Approach to Writing CUDA Kernels

• Find an algorithm that can expose substantial parallelism, we’ll ultimately need thousands of independent threads…

• Identify appropriate GPU memory or texture subsystems used to store data used by kernel

• Are there trade-offs that can be made to exchange computation for more parallelism?
 - Though counterintuitive, past successes resulted from this strategy
 - “Brute force” methods that expose significant parallelism do surprisingly well on current GPUs

• Analyze the real-world use case for the problem and select the kernel for the problem sizes that will be heavily used
Direct Coulomb Summation Runtime

- GPU fully utilized, ~40x faster than CPU
- GPU initialization time: ~110ms

Lower is better

Accelerating molecular modeling applications with graphics processors.
DCS Observations for GPU Implementation

- Naive implementation has a low ratio of FP arithmetic operations to memory transactions (at least for a GPU…)
- The innermost loop will consume operands VERY quickly
- Since atoms are read-only, they are ideal candidates for texture memory or constant memory
- GPU implementations must access constant memory efficiently, avoid shared memory bank conflicts, coalesce global memory accesses, and overlap arithmetic with global memory latency
- Map is padded out to a multiple of the thread block size:
 - Eliminates conditional handling at the edges, thus also eliminating the possibility of branch divergence
 - Assists with memory coalescing
Direct Coulomb Summation on the GPU

- Grid of thread blocks
- Lattice padding
- Thread blocks: 64-256 threads
- Threads compute up to 8 potentials, skipping by half-warps

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC
DCS CUDA Block/Grid Decomposition
(non-unrolled)
Grid of thread blocks:

Thread blocks: 64-256 threads

Threads compute 1 potential each

Padding waste
DCS CUDA Block/Grid Decomposition (non-unrolled)

- 16x16 CUDA thread blocks are a nice starting size with a satisfactory number of threads
- Small enough that there’s not much waste due to padding at the edges
DCS Version 1: Const+Precalc
187 GFLOPS, 18.6 Billion Atom Evals/Sec

- **Pros:**
 - Pre-compute dz^2 for entire slice
 - Inner loop over read-only atoms, const memory ideal
 - If all threads read the same const data at the same time, performance is similar to reading a register

- **Cons:**
 - Const memory only holds ~4000 atom coordinates and charges
 - Potential summation must be done in multiple kernel invocations per slice, with const atom data updated for each invocation
 - Host must shuffle data in/out for each pass
DCS Version 1: Kernel Structure

...
DCS CUDA Block/Grid Decomposition (unrolled, thread coarsening)

- Reuse atom data and partial distance components multiple times
- Use “unroll and jam” to unroll the outer loop into the inner loop
- Uses more registers, but increases arithmetic intensity significantly
- Kernels that unroll the inner loop calculate more than one lattice point per thread result in larger computational tiles:
 - Thread count per block must be decreased to reduce computational tile size as unrolling is increased
 - Otherwise, tile size gets bigger as threads do more than one lattice point evaluation, resulting on a significant increase in padding and wasted computations at edges
DCS CUDA Algorithm: Unrolling Loops

• Add each atom’s contribution to several lattice points at a time, distances only differ in one component:

\[
\text{potential}[j] += \frac{\text{atom}[i].\text{charge}}{r_{ij}} \\
\text{potential}[j+1] += \frac{\text{atom}[i].\text{charge}}{r_{i(j+1)}} \\
\ldots
\]

Distances to Atom[i]
DCS CUDA Block/Grid Decomposition

Grid of thread blocks:

0,0 0,1 ...
1,0 1,1 ...
...
...

Thread blocks: 64-256 threads

Unrolling increases computational tile size

Threads compute up to 8 potentials

Padding waste

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC
DCS Version 2: Inner Loop

...for (atomid=0; atomid<numatoms; atomid++) {
 float dy = coory - atominfo[atomid].y;
 float dysqpdzsq = (dy * dy) + atominfo[atomid].z;
 float x = atominfo[atomid].x;
 float dx1 = coorx1 - x;
 float dx2 = coorx2 - x;
 float dx3 = coorx3 - x;
 float dx4 = coorx4 - x;
 float charge = atominfo[atomid].w;
 energyvalx1 += charge * rsqrf(dx1*dx1 + dysqpdzsq);
 energyvalx2 += charge * rsqrf(dx2*dx2 + dysqpdzsq);
 energyvalx3 += charge * rsqrf(dx3*dx3 + dysqpdzsq);
 energyvalx4 += charge * rsqrf(dx4*dx4 + dysqpdzsq);
}

Compared to non-unrolled kernel: memory loads are decreased by 4x, and FLOPS per evaluation are reduced, but register use is increased...
DCS Version 4:
Const+Loop Unrolling+Coalescing
291.5 GFLOPS, 39.5 Billion Atom Evals/Sec

• Pros:
 – Simplified structure compared to version 3, no use of shared memory, register pressure kept at bay by doing global memory operations only at the end of the kernel
 – Using fewer registers allows co-scheduling of more blocks, increasing GPU “occupancy”
 – Doesn’t have as strict of a thread block dimension requirement as version 3, computational tile size can be smaller

• Cons:
 – The computation tile size is still large, so small potential maps don’t perform as well as large ones
DCS Version 4: Kernel Structure

- Processes 8 lattice points at a time in the inner loop
- Subsequent lattice points computed by each thread are offset by a half-warp to guarantee coalesced memory accesses
- Loads and increments 8 potential map lattice points from global memory at completion of the summation, avoiding register consumption
- Source code is available by request
DCS Version 4: Inner Loop

…float coory = gridspacing * yindex;
float coorx = gridspacing * xindex;
float gridspacing_coalesce = gridspacing * BLOCKSIZEX;
int atomid;
for (atomid=0; atomid<numatoms; atomid++) {
 float dy = coory - atominfo[atomid].y;
 float dyz2 = (dy * dy) + atominfo[atomid].z;
 float dx1 = coorx - atominfo[atomid].x;
 ...
 float dx8 = dx7 + gridspacing_coalesce;
 energyvalx1 += atominfo[atomid].w * rsqrtf(dx1*dx1 + dyz2);
 ...
 energyvalx8 += atominfo[atomid].w * rsqrtf(dx8*dx8 + dyz2);
}
energygrid[outaddr] += energyvalx1;
[...]
energygrid[outaddr+7*BLOCKSIZEX] += energyvalx7;

Points spaced for memory coalescing

Reuse partial distance components $dy^2 + dz^2$

Global memory ops occur only at the end of the kernel, decreases register use
DCS CUDA Block/Grid Decomposition

Unrolling increases computational tile size

Thread blocks: 64-256 threads

Threads compute up to 8 potentials, skipping by half-warps

Grid of thread blocks:

(0,0) (0,1) ...
(1,0) (1,1) ...
...
...

Padding waste
Direct Coulomb Summation Performance

Number of thread blocks modulo number of SMs results in significant performance variation for small workloads.

CUDA-Unroll8clx: fastest GPU kernel, 44x faster than CPU, 291 GFLOPS on GeForce 8800GTX

CUDA-Simple: 14.8x faster, 33% of fastest GPU kernel

DCS Version 4 Inner Loop, Scalar OpenCL

...for (atomid=0; atomid<numatoms; atomid++) {
 float dy = coory - atominfo[atomid].y;
 float dyz2 = (dy * dy) + atominfo[atomid].z;
 float dx1 = coorx – atominfo[atomid].x;
 float dx2 = dx1 + gridspacing_coalesce;
 float dx3 = dx2 + gridspacing_coalesce;
 float dx4 = dx3 + gridspacing_coalesce;
 float charge = atominfo[atomid].w;
 energyvalx1 += charge * native_rsqrt(dx1*dx1 + dyz2);
 energyvalx2 += charge * native_rsqrt(dx2*dx2 + dyz2);
 energyvalx3 += charge * native_rsqrt(dx3*dx3 + dyz2);
 energyvalx4 += charge * native_rsqrt(dx4*dx4 + dyz2);
}
DCS Version 4 Inner Loop (CUDA)

(only 4-way unrolling for conciseness to compare OpenCL)

...for (atomid=0; atomid<numatoms; atomid++) {
 float dy = coory - atominfo[atomid].y;
 float dyz2 = (dy * dy) + atominfo[atomid].z;
 float dx1 = coorx – atominfo[atomid].x;
 float dx2 = dx1 + gridspacing_coalesce;
 float dx3 = dx2 + gridspacing_coalesce;
 float dx4 = dx3 + gridspacing_coalesce;
 float charge = atominfo[atomid].w;
 energyvalx1 += charge * rsqrtf(dx1*dx1 + dyz2);
 energyvalx2 += charge * rsqrtf(dx2*dx2 + dyz2);
 energyvalx3 += charge * rsqrtf(dx3*dx3 + dyz2);
 energyvalx4 += charge * rsqrtf(dx4*dx4 + dyz2);
}

DCS Version 4 Inner Loop, Vectorized OpenCL

```c
float4 gridspacing_u4 = { 0.f, 1.f, 2.f, 3.f };    
gridspacing_u4 *= gridspacing_coalesce; 
float4 energyvalx=0.0f;   
...

for (atomid=0; atomid<numatoms; atomid++)  
  float dy = coory - atominfo[atomid].y;  
  float dyz2 = (dy * dy) + atominfo[atomid].z;  
  float4 dx = gridspacing_u4 + (coorx – atominfo[atomid].x);  
  float charge = atominfo[atomid].w;  
  energyvalx1 += charge * native_rsqrt(dx1*dx1 + dyz2); 
```

CPUs, AMD GPUs, and Cell often perform better with vectorized kernels. Use of vector types may increase register pressure; sometimes a delicate balance…
Acknowledgements

• Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign
• Wen-mei Hwu and the IMPACT group at University of Illinois at Urbana-Champaign
• NVIDIA CUDA Center of Excellence, University of Illinois at Urbana-Champaign
• NCSA Innovative Systems Lab
• The CUDA team at NVIDIA
• NIH support: P41-RR05969