
NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

GPU Particle-Particle Algorithms:
Non-bonded Force Calculation

David J. Hardy

Theoretical and Computational Biophysics Group
Beckman Institute for Advanced Science and Technology

University of Illinois at Urbana-Champaign
http://www.ks.uiuc.edu/Research/gpu/

GPU Programming for Molecular Modeling Workshop,
University of Illinois at Urbana-Champaign, August 6-8, 2010

http://www.ks.uiuc.edu/Research/gpu/
http://www.ks.uiuc.edu/Research/gpu/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Outline
• Introduction

• Short-range non-bonded forces

- GPU kernel design considerations

- NAMD GPU kernel

- Kernel based on multilevel summation method

• Long-range electrostatics

- Overview of multilevel summation method (MSM)

- Kernel for MSM grid calculation (3D convolution)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Comparison with Particle-Grid Algorithms

• Particle-particle is more difficult because:

- irregularity makes it harder to map work to threads

- less fine-grained parallelism available:

✦ N particles, M grid points:

✦ particle-grid vs. particle-particle interactions

- amount of fine-grained parallelism reduced by
factor of 20 to 200

• Particle-particle interactions require more data
per interaction

10N ≤ M ≤ 100N

MN 1
2N

2

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Loop unrolling (to reuse data)?

particle-grid
rx, ry, rz
e1, ..., ek

(positions, potentials)

3+k registers

particle-particle

r1x, r1y, r1z, ..., rkx, rky, rkz
q1, ..., qk
f1x, f1y, f1z, ..., fkx, fky, fkz
u

(positions, charges, forces, energy)

7k+1 registers

Particle-particle does not benefit from
assigning multiple particles per thread

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Non-bonded Potential Functions

Uelec =
�

i<j

C
qiqj

|rj − ri|

ULJ =
�

i<j

�ij

�� rmin
ij

|rj − ri|

�12
− 2

� rmin
ij

|rj − ri|

�6
�

rmin
ij =

1

2

�
rmin
i + rmin

j

�

�ij =
√
�i�j

Forces obtained from gradients of potential functions.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Outline
• Introduction

• Short-range non-bonded forces

- GPU kernel design considerations

- NAMD GPU kernel

- Kernel based on multilevel summation method

• Long-range electrostatics

- Overview of multilevel summation method (MSM)

- Kernel for MSM grid calculation (3D convolution)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Designing GPU Kernels for
Short-range Non-bonded Forces

• Calculate both electrostatics and van der Waals interactions
(need atom coordinates and parameters)

• Spatial hashing of atoms into bins (best done on CPU)

• Should we use pairlists?

- Reduces computation, increases and delocalizes memory access

• Should we make use of Newton’s 3rd Law to reduce work?

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Designing GPU Kernels for
Short-range Non-bonded Forces

• How do we map work to the GPU threads?

- Fine-grained: assign threads to sum forces on atoms

- Extremely fine-grained: assign threads to pairwise
interactions

• How do we decompose work into thread blocks?

- Non-uniform: assign thread blocks to bins

- Uniform: assign thread blocks to entries of the force matrix

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Designing GPU Kernels for
Short-range Non-bonded Forces

• Is single precision enough? Do we need double precision?

• How might we handle non-bonded exclusions?

- Detect and omit excluded pairs (use bit masks)

- Ignore, fix with CPU (use force clamping)

• How do we compute potential energies or the virial?

• How do we calculate expensive functional forms?

- PME requires erfc(): is it faster to use an interpolation table?

• Other issues: supporting NBFix parameters

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

• Spatially decompose data
and communication.
• Separate but related work
decomposition.
• “Compute objects”
facilitate iterative,
measurement-based load
balancing system.

NAMD Hybrid Decomposition
Kale et al., J. Comp. Phys. 151:283-312, 1999.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

847 objects 100,000

NAMD Overlapping Execution

Example
Configuration

Objects are assigned to processors and queued as data arrives.

108

Phillips et al., SC2002.

Offload to GPU

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

NAMD Non-bonded Forces on GPU
• Decompose work into pairs of “patches” (bins), identical to NAMD structure.
• Each patch-pair is calculated by an SM (thread block).

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constant
Memory
Exclusions

8kB cache 8kB cache

32-way SIMD Multiprocessor
32-256 multiplexed threads

768 MB Main Memory, no cache, 300+ cycle latency

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Each Block Gets a Pair of Patches
• Block-level constants in shared memory to save registers.
• patch_pair array is 16-byte aligned.
• To coalesce read have each thread load one int from global

memory and write it into a union in shared memory.

 #define myPatchPair pp.pp
 __shared__ union { patch_pair pp; unsigned int i[8]; } pp;
 __shared__ bool same_patch;
 __shared__ bool self_force;

 if (threadIdx.x < (sizeof(patch_pair)>>2)) {
 unsigned int tmp = ((unsigned int*)patch_pairs)[
 (sizeof(patch_pair)>>2)*blockIdx.x+threadIdx.x];
 pp.i[threadIdx.x] = tmp;
 }
 __syncthreads();
 // now all threads can access myPatchPair safely

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Loading Atoms Is Not Trivial

• Want to copy two 16-byte structs per
thread from global to shared memory.

• Global memory access should be
aligned on 16-byte boundaries to be
coalesced.

• 16-byte structs in shared memory cause
bank conflicts, 36-byte structs do not.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

struct __align__(16) atom { // must be multiple of 16!
 float3 position;
 float charge;
};

struct __align__(16) atom_param { // must be multiple of 16!
 float sqrt_epsilon;
 float half_sigma;
 unsigned int index;
 unsigned short excl_index;
 unsigned short excl_maxdiff;
};

struct shared_atom { // do not align, size 36 to avoid bank conflicts
 float3 position;
 float charge;
 float sqrt_epsilon;
 float half_sigma;
 unsigned int index;
 unsigned int excl_index;
 unsigned int excl_maxdiff;
};

Right-Sized Atom Data Structures

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

More Problems Loading Atoms

• Global access to mixed-type atom_param struct
won’t coalesce! (Only built-in vector types will.)

• Fix it by casting global atom_param* to uint4*.
• Can’t take pointer to struct in registers, so copy

integers to shared memory.
• Use alias of shared_atom and uint arrays to

finally read patch B into usable struct in registers.
• Use same trick to load patch A, but this time

leave the data in shared memory.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

extern __shared__ shared_atom jas[]; // atom jas[max_atoms_per_patch]
extern __shared__ unsigned int sh_uint[]; // aliased to jas[]
atom ipq;
atom_param iap;

if (threadIdx.x < myPatchPair.patch1_size) {
 int i = myPatchPair.patch1_atom_start + threadIdx.x;
 uint4 tmpa = ((uint4*)atoms)[i]; // coalesced reads from global memory
 uint4 tmpap = ((uint4*)atom_params)[i];
 i = 9*threadIdx.x;
 sh_uint[i] = tmpa.x; // copy to aliased ints in shared memory
 sh_uint[i+1] = tmpa.y;
 sh_uint[i+2] = tmpa.z;
 sh_uint[i+3] = tmpa.w;
 sh_uint[i+4] = tmpap.x;
 sh_uint[i+5] = tmpap.y;
 sh_uint[i+6] = tmpap.z;
 sh_uint[i+7] = ((tmpap.w << 16) >> 16); // split two shorts into shared_atom ints
 sh_uint[i+8] = (tmpap.w >> 16);
 COPY_ATOM(ipq, jas[threadIdx.x]) // macros to copy structs element by element
 COPY_PARAM(iap, jas[threadIdx.x])
}

Hack to Coalesce atom_params

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

CPU Force Interpolation

• Want to avoid calculating erfc(), sqrt(), branches for
switching functions.

• U(r2) = ε(σ12A(r2) + σ6B(r2)) + qqC(r2)
• F = -2 r U’(r2)
• Piecewise cubic interpolation of A,B,C.
• Need more windows at small r2, so use exponent and

high-order mantissa bits in floating point format to
determine window.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Texture Unit Force Interpolation

• Bit manipulation of floats is not possible.
• But rsqrt() is implemented in hardware.
• F(r-1)/r = ε(σ12A(r-1) + σ6B(r-1)) + qqC(r-1)
• F = r F(r-1)/r
• Piecewise linear interpolation of A,B,C.

–F(r) is linear since r (a r-1 + b) = a + r b
• Texture unit hardware is a perfect match.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Const Memory Exclusion Tables

• Need to exclude bonded pairs of atoms.
–Also apply correction for PME electrostatics.

• Exclusions determined by using atom indices to
bit flags in exclusion arrays.

• Repetitive molecular structures limit unique
exclusion arrays.

• All exclusion data fits in constant cache.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Overview of Inner Loop

• Calculate forces on atoms in registers due to
atoms in shared memory.
– Ignore Newton’s 3rd law (reciprocal forces).
–Do not sum forces for atoms in shared memory.

• All threads access the same shared memory atom,
allowing shared memory broadcast.

• Only calculate forces for atoms within cutoff
distance (roughly 10% of pairs).

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

texture<float4> force_table;
__constant__ unsigned int exclusions[];
__shared__ atom jatom[];
atom iatom; // per-thread atom, stored in registers
float4 iforce; // per-thread force, stored in registers
for (int j = 0; j < jatom_count; ++j) {
 float dx = jatom[j].x - iatom.x; float dy = jatom[j].y - iatom.y; float dz = jatom[j].z - iatom.z;
 float r2 = dx*dx + dy*dy + dz*dz;
 if (r2 < cutoff2) {
 float4 ft = texfetch(force_table, 1.f/sqrt(r2));
 bool excluded = false;
 int indexdiff = iatom.index - jatom[j].index;
 if (abs(indexdiff) <= (int) jatom[j].excl_maxdiff) {
 indexdiff += jatom[j].excl_index;
 excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);
 }
 float f = iatom.half_sigma + jatom[j].half_sigma; // sigma
 f *= f*f; // sigma^3
 f *= f; // sigma^6
 f *= (f * ft.x + ft.y); // sigma^12 * fi.x - sigma^6 * fi.y
 f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon;
 float qq = iatom.charge * jatom[j].charge;
 if (excluded) { f = qq * ft.w; } // PME correction
 else { f += qq * ft.z; } // Coulomb
 iforce.x += dx * f; iforce.y += dy * f; iforce.z += dz * f;
 iforce.w += 1.f; // interaction count or energy
 }
}

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

Force Interpolation

Exclusions

Parameters

Accumulation

Nonbonded Forces
 CUDA Code

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

GPU Kernel for Short-range MSM

• CPU sorts atoms into bins, copies
bins to GPU global memory

• Each bin is assigned to a thread block

• Threads are assigned to individual
atoms

• Loop over surrounding
neighborhood of bins, summing
forces and energies from their atoms

• Calculation for MSM involves rsqrt()
plus several multiplies and adds

• CPU copies forces and energies back
from GPU global memory

Constant
Memory

Array
of Bin
Index

Offsets

Shared
Memory

Bin of
Atoms

Copy bin
into

shared
memory

Find index
offset for my
neighbor bin

Global
Memory

Each thread
keeps its atom’s

forces in registers

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

GPU Kernel for Short-range MSM
• Each thread accumulates atom force

and energies in registers

• Bin neighborhood index offsets
stored in constant memory

• Load atom bin data into shared
memory; atom data and bin “depth”
are carefully chosen to permit
coalesced reads from global memory

• Check for and omit excluded pairs

• Thread block performs sum
reduction of energies

• Coalesced writing of forces and
energies (with padding) to GPU
global memory

• CPU sums energies from bins

Constant
Memory

Array
of Bin
Index

Offsets

Shared
Memory

Bin of
Atoms

Copy bin
into

shared
memory

Find index
offset for my
neighbor bin

Global
Memory

Each thread
keeps its atom’s

forces in registers

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Atom Bin Storage
typedef struct BinSlot_t {
 int index;
 float rx, ry, rz; /* position */
 float q, emin, rmin; /* charge, sqrt(emin), (1/2)(rmin) */
 unsigned int excl;
} BinSlot;

union flint {
 float f;
 int i;
 unsigned int u;
};

density = 1.f/10; /* 1 atom per 10 A^3 */
bindepth = 64; /* thread block size */
binfill = 0.5; /* bins are not allowed to be overfilled */

/* ideal bin volume, use to determine bin array dimensions */
binvolume = binfill * bindepth / density;
binlength = powf(binvolume, 1.f/3); /* our ideal bin side length */

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Loop Over Neighborhood of Bins
 for (n = 0; n < NbrhoodLen_C; n++) { /* loop over neighbor bins */
 int ib = Nbrhood_C[n].x;
 int jb = Nbrhood_C[n].y;
 int kb = Nbrhood_C[n].z; /* these are offsets from my bin number */
 float cx = -ib * bx;
 float cy = -jb * by;
 float cz = -kb * bz; /* (bin center) - (nbrbin center) */
 ib += i;
 jb += j;
 kb += k; /* absolute indices of neighbor bin */
 /*** bin number adjusted for boundaries ***/

 __syncthreads(); /* read the next bin into the abin cache in shared memory */
 int bindex = (kb*nby + jb)*nbx + ib;
 int m;
 for (m = 0; m < 8; m++) {
 /* atom bin contains 8*bindepth flints */
 abinCache_S[m*bindepth + na] = abin_G[bindex*8*bindepth + m*bindepth + na];
 }
 __syncthreads();

 /*** loop over atoms in bin ***/

 } /* end loop over neighborhood */

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Inner Loop Over Atoms In Bin (1)
 for (nb = 0; nb < (8*bindepth); nb += 8) { // loop over nbr bin atoms
 // go through shared memory cache elements in order
 int bid = abinCache_S[nb].i;
 if (-1 == bid) break; /* no more atoms in bin */
 float rx = rix - abinCache_S[nb+1].f + cx;
 float ry = riy - abinCache_S[nb+2].f + cy;
 float rz = riz - abinCache_S[nb+3].f + cz;
 float r2 = rx*rx + ry*ry + rz*rz;

 if (r2 < cutoff2) { /* within cutoff */
 float qj = abinCache_S[nb+4].f;
 float eminj = abinCache_S[nb+5].f;
 float rminj = abinCache_S[nb+6].f;
 unsigned int exmask = abinCache_S[nb+7].u;
 int shift = aid - bid;
 if (shift < 0) {
 exmask = excli;
 shift = -shift;
 }
 int isexcl = (shift < 32 && (exmask & (1u<<(unsigned)shift)));

 /* exclusions also have to subtract off long-range elec part */
 float s = r2 * inv_cutoff2;
 float g = 1 + (s-1)*(-1.f/2 + (s-1)*(3.f/8)); /* Taylor 2 splitting */
 float dg = -1.f/2 + (s-1)*(3.f/4);

 float qq = qi * qj;
 float ue = qq * (-inv_cutoff * g);
 float due_r = qq * (-2*inv_cutoff2*inv_cutoff * dg);
 float uv = 0;
 float duv_r = 0;

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Inner Loop Over Atoms In Bin (2)
 if (! isexcl) { /* not an exclusion, evaluate both elec and vdw */
 float inv_r = rsqrtf(r2);
 float inv_r2 = inv_r * inv_r;
 ue += qq * inv_r;
 due_r += qq * (-inv_r*inv_r2);
 float emin = emini * eminj;
 float rmin = rmini + rminj;
 float rmin_r2 = (rmin * rmin) * inv_r2;
 float rmin_r6 = rmin_r2 * rmin_r2 * rmin_r2;
 float rmin_r12 = rmin_r6 * rmin_r6;
 uv = emin * (rmin_r12 - 2 * rmin_r6);
 duv_r = -12 * emin * inv_r2 * (rmin_r12 - rmin_r6);

 if (r2 > swon2) { /* switching function for vdw */
 float sw = (cutoff2 - r2) * (cutoff2 - r2) *
 (cutoff2 + 2*r2 - 3*swon2) * swdenom;
 float dsw_r = 12*(cutoff2 - r2) * (swon2 - r2) * swdenom;
 duv_r = uv * dsw_r + duv_r * sw;
 uv = uv * sw;
 }
 }

 fx += -rx * (due_r + duv_r);
 fy += -ry * (due_r + duv_r);
 fz += -rz * (due_r + duv_r);
 u_elec += 0.5f * ue;
 u_vdw += 0.5f * uv;
 } /* within cutoff */
 } /* loop over nbr bin atoms */

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Sum Reduction of Energies
 /* sum reduce energies over thread block */
 fbinCache_S[na] = u_elec; // everybody writes their local values
 fbinCache_S[bindepth + na] = u_vdw;
 __syncthreads();
 {
 int m;
 for (m = (bindepth >> 1); m > 32; m >>= 1) { // sync threads across warps
 if (na < m) {
 fbinCache_S[na] += fbinCache_S[na + m];
 fbinCache_S[na+bindepth] += fbinCache_S[na+bindepth + m];
 }
 __syncthreads();
 }
 }
 if (na < 32) { // no sync required within a warp
 fbinCache_S[na] += fbinCache_S[na + 32];
 fbinCache_S[na+bindepth] += fbinCache_S[na+bindepth + 32];

 fbinCache_S[na] += fbinCache_S[na + 16];
 fbinCache_S[na+bindepth] += fbinCache_S[na+bindepth + 16];

 fbinCache_S[na] += fbinCache_S[na + 8];
 fbinCache_S[na+bindepth] += fbinCache_S[na+bindepth + 8];

 fbinCache_S[na] += fbinCache_S[na + 4];
 fbinCache_S[na+bindepth] += fbinCache_S[na+bindepth + 4];

 fbinCache_S[na] += fbinCache_S[na + 2];
 fbinCache_S[na+bindepth] += fbinCache_S[na+bindepth + 2];

 fbinCache_S[na] += fbinCache_S[na + 1];
 fbinCache_S[na+bindepth] += fbinCache_S[na+bindepth + 1];
 }
 if (na < 1) { fbinCache_S[3*bindepth+1] = fbinCache_S[bindepth]; // summed u_vdw
 fbinCache_S[3*bindepth] = fbinCache_S[0]; // summed u_elec
 }
 __syncthreads(); // sync here before writing local forces

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Outline
• Introduction

• Short-range non-bonded forces

- GPU kernel design considerations

- NAMD GPU kernel

- Kernel based on multilevel summation method

• Long-range electrostatics

- Overview of multilevel summation method (MSM)

- Kernel for MSM grid calculation (3D convolution)

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Multilevel Summation Method
• Fast algorithm for N-body electrostatics

• Calculates sum of smoothed pairwise potentials interpolated
from a hierarchal nesting of grids

• Advantages over PME (particle-mesh Ewald) and/or FMM (fast
multipole method):

- Algorithm has linear time complexity

- Allows non-periodic or periodic boundaries

- Produces continuous forces for dynamics (advantage over FMM)

- Avoids 3D FFTs for better parallel scaling (advantage over PME)

- Permits polynomial splittings (no erfc() evaluation, as used by PME)

- Spatial separation allows use of multiple time steps

- Can be extended to other types of pairwise interactions

Skeel, et al., J. Comp. Chem. 23:673-684, 2002.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

MSM Main Ideas

=

+

+

atoms

h-grid

2h-grid

Split the 1/r potential Interpolate the smoothed potentials

a 2a

.

.

.
.
.
.

• Split the 1/r potential into a short-range cutoff part plus smoothed parts that
are successively more slowly varying. All but the top level potential are cut off.

• Smoothed potentials are interpolated from successively coarser grids.

• Finest grid spacing h and smallest cutoff distance a are doubled at each
successive level.

1/r

r0

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

MSM Calculation
force

exact
short-range

part

interpolated
long-range

part
+=

Computational Steps

short-range cutoff

interpolationanterpolation

h-grid cutoff

2h-grid cutoff

4h-grid

restriction

restriction

prolongation

prolongationlong-range
parts

positions
charges forces

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Multilevel Summation on the GPU
(for electrostatic potential maps)

Computational steps CPU (s) w/ GPU (s) Speedup

Short-range cutoff 480.07 14.87 32.3

Long-range anterpolation 0.18

restriction 0.16

lattice cutoff 49.47 1.36 36.4

prolongation 0.17

interpolation 3.47

Total 533.52 20.21 26.4

Performance profile for 0.5 Å map of potential for 1.5 M atoms.
Hardware platform is Intel QX6700 CPU and NVIDIA GTX 280.

Accelerate short-range cutoff and lattice cutoff parts

Multilevel summation of electrostatic potentials using graphics processing units.
D. Hardy, J. Stone, K. Schulten. J. Parallel Computing, 35:164-177, 2009.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

MSM Grid Interactions
• Potential summed from grid point charges within cutoff

• Uniform spacing enables distance-based interactions to be
precomputed as stencil of “weights”

• Weights at each level are identical up to scaling factor (!)

• Calculate as 3D convolution of weights

- stencil size up to 23x23x23

Cutoff radius

Accumulate potential

Sphere of
grid point
charges

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

MSM Grid Interactions on GPU
• Store weights in constant memory (padded up to next multiple of 4)

• Thread block calculates 4x4x4 region of potentials (stored contiguously)

• Pack all regions over all levels into 1D array (each level padded with zero-charge region)

• Store map of level array offsets in constant memory

• Kernel has thread block loop over surrounding regions of charge (load into shared memory)

• All grid levels are calculated concurrently, scaled by level factor (keeps GPU from running out
of work at upper grid levels)

Shared memory

Global memory Constant memory

Grid
potential
regions

Each thread block cooperatively loads
regions of grid charge into shared memory,
multiply by weights from constant memory

Grid
charge
regions

Stencil of weights

Subset of grid
charge regions

Hardy, et al., J. Paral. Comp. 35:164-177, 2009.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Apply Weights Using Sliding Window

• Thread block must collectively use same value from
constant memory

• Read 8x8x8 grid charges (8 regions) into shared memory

• Window of size 4x4x4 maintains same relative distances

• Slide window by 4 shifts along each dimension

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/ Beckman Institute, UIUC

Initial Results of GPU-MSM for MD

Box of 21950 flexible waters,
12 A cutoff, 1ps

CPU only with GPU
Speedup vs.
NAMD/CPU

NAMD with PME 1199.8 s 210.5 s 5.7 x

NAMD-Lite with MSM 5183.3 s
(4598.6 short, 572.23 long)

176.6 s
(93.9 short, 63.1 long)

6.8 x
(19% over NAMD/GPU)

(GPU: NVIDIA GTX-285, using CUDA 3.0; CPU: 2.4 GHz Intel Core 2 Q6600 quad core)

