
NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NAMD: Molecular Dynamics
on GPU Clusters

James Phillips
http://www.ks.uiuc.edu/Research/gpu/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Beckman Institute
University of Illinois at

Urbana-Champaign

Theoretical and Computational
Biophysics Group

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Computational Microscopy
Ribosome: synthesizes proteins from

genetic information, target for antibiotics
Silicon nanopore: bionanodevice
for sequencing DNA efficiently

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NAMD: Practical Supercomputing
• 35,000 users can’t all be computer experts.

– 18% are NIH-funded; many in other countries.
– 8200 have downloaded more than one version.

• User experience is the same on all platforms.
– No change in input, output, or configuration files.
– Run any simulation on any number of processors.
– Precompiled binaries available when possible.

• Desktops and laptops – setup and testing
– x86 and x86-64 Windows, and Macintosh
– Allow both shared-memory and network-based parallelism.

• Linux clusters – affordable workhorses
– x86, x86-64, and Itanium processors
– Gigabit ethernet, Myrinet, InfiniBand, Quadrics, Altix, etc

Phillips et al., J. Comp. Chem. 26:1781-1802, 2005.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Our Goal: Practical Acceleration

• Broadly applicable to scientific computing
– Programmable by domain scientists
– Scalable from small to large machines

• Broadly available to researchers
– Price driven by commodity market
– Low burden on system administration

• Sustainable performance advantage
– Performance driven by Moore’s law
– Stable market and supply chain

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

• Outlook in 2005-2006:
– FPGA reconfigurable computing (with NCSA)

• Difficult to program, slow floating point, expensive
– Cell processor (NCSA hardware)

• Relatively easy to program, expensive
– ClearSpeed (direct contact with company)

• Limited memory and memory bandwidth, expensive
– MDGRAPE

• Inflexible and expensive

– Graphics processor (GPU)
• Program must be expressed as graphics operations

Acceleration Options for NAMD

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

CUDA: Practical Performance

• CUDA makes GPU acceleration usable:
– Developed and supported by NVIDIA.
– No masquerading as graphics rendering.
– New shared memory and synchronization.
– No OpenGL or display device hassles.
– Multiple processes per card (or vice versa).

• Resource and collaborators make it useful:
– Experience from VMD development
– David Kirk (Chief Scientist, NVIDIA)
– Wen-mei Hwu (ECE Professor, UIUC)

November 2006: NVIDIA announces CUDA for G80 GPU.

Fun to program (and drive)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

VMD – “Visual Molecular Dynamics”
• Visualization and analysis of molecular dynamics simulations, sequence data,

volumetric data, quantum chemistry simulations, particle systems, …
• User extensible with scripting and plugins
• http://www.ks.uiuc.edu/Research/vmd/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Molecular orbital

calculation and display

100x to 120x faster
Imaging of gas migration
pathways in proteins with
implicit ligand sampling

20x to 30x faster

Electrostatic field

calculation, ion placement

20x to 44x faster

CUDA Acceleration in VMD

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

• Spatially decompose
data and communication.
• Separate but related
work decomposition.
• “Compute objects”
facilitate iterative,
measurement-based load
balancing system.

NAMD Hybrid Decomposition
Kale et al., J. Comp. Phys. 151:283-312, 1999.

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NAMD Code is Message-Driven

• No receive calls as in “message passing”
• Messages sent to object “entry points”
• Incoming messages placed in queue

– Priorities are necessary for performance
• Execution generates new messages
• Implemented in Charm++ on top of MPI

– Can be emulated in MPI alone
– Charm++ provides tools and idioms
– Parallel Programming Lab: http://charm.cs.uiuc.edu/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

System Noise Example
Timeline from Charm++ tool “Projections” http://charm.cs.uiuc.edu/

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NAMD Overlapping Execution

Objects are assigned to processors and queued as data arrives.

Phillips et al., SC2002.

Offload to GPU

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Message-Driven CUDA?
• No, CUDA is too coarse-grained.

– CPU needs fine-grained work to interleave and pipeline.
– GPU needs large numbers of tasks submitted all at once.

• No, CUDA lacks priorities.
– FIFO isn’t enough.

• Perhaps in a future interface:
– Stream data to GPU.
– Append blocks to a running kernel invocation.
– Stream data out as blocks complete.

• Fermi looks very promising!

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Overlapping GPU and CPU
with Communication
Remote Force Local ForceGPU

CPU

Other Nodes/Processes

LocalRemote

x
f f

f

f

Local x

x

Update

One Timestep

x

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

“Remote Forces”

• Forces on atoms in a local
patch are “local”

• Forces on atoms in a remote
patch are “remote”

• Calculate remote forces first to
overlap force communication
with local force calculation

• Not enough work to overlap
with position communication

Local
Patch

Remote
Patch

Local
Patch

Remote
Patch

Remote
Patch

Remote
Patch

Work done by one processor

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Actual Timelines from NAMD
Generated using Charm++ tool “Projections” http://charm.cs.uiuc.edu/

Remote Force Local Force

x
f f

x

GPU

CPU

f

f

x

x

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NCSA “8+2” Lincoln Cluster

• How to share a GPU among 4 CPU cores?
– Send all GPU work to one process?
– Coordinate via messages to avoid conflict?
– Or just hope for the best?

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NCSA Lincoln Cluster Performance
(8 Intel cores and 2 NVIDIA Telsa GPUs per node)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

8 16 32 64

2 GPUs = 24 cores
4 GPUs

8 GPUs
16 GPUs

CPU cores

STMV (1M atoms) s/step

~2.8

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

NCSA Lincoln Cluster Performance
(8 cores and 2 GPUs per node)

2 GPUs = 24 cores
4 GPUs

8 GPUs
16 GPUs

CPU cores

STMV s/step

8 GPUs =
96 CPU cores

~5.6 ~2.8

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

No GPU Sharing (Ideal World)

Remote Force Local ForceGPU 1

x
f f

x

Remote Force Local ForceGPU 2

x
f f

x

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Sharing (Desired)

Remote Force Local Force

Client 2

x
f f

x

Remote Force Local Force

Client 1

x
f f

x

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Sharing (Feared)

Remote
Force

Local
Force

Client 2

x
f f

x

Remote
Force

Local
Force

Client 1

x
f f

x

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Sharing (Observed)

Remote
Force

Local
Force

Client 2

x
f f

x

Remote
Force

Local
Force

Client 1

x
f f

x

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU Sharing (Explained)

• CUDA is behaving reasonably, but
• Force calculation is actually two kernels

– Longer kernel writes to multiple arrays
– Shorter kernel combines output

• Possible solutions:
– Modify CUDA to be less “fair” (please!)
– Use locks (atomics) to merge kernels (not G80)
– Explicit inter-client coordination

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Inter-client Communication

• First identify which processes share a GPU
– Need to know physical node for each process
– GPU-assignment must reveal real device ID
– Threads don’t eliminate the problem
– Production code can’t make assumptions

• Token-passing is simple and predictable
– Rotate clients in fixed order
– High-priority, yield, low-priority, yield, …

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Token-Passing GPU-Sharing

Remote LocalLocal Remote

GPU1

GPU2

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU-Sharing with PME

Remote LocalLocal Remote

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Weakness of Token-Passing

• GPU is idle while token is being passed
– Busy client delays itself and others

• Next strategy requires threads:
– One process per GPU, one thread per core
– Funnel CUDA calls through a single stream
– No local work until all remote work is queued
– Typically funnels MPI as well

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Recent NAMD GPU Developments
• Production features in 2.7b3 release:

– Full electrostatics with PME
– 1-4 exclusions
– Constant-pressure simulation
– Improved force accuracy:

• Patch-centered atom coordinates
• Increased precision of force interpolation

• Performance enhancements (in progress):
– Recursive bisection within patch on 32-atom boundaries
– Block-based pairlists based on sorted atoms
– Sort blocks in order of decreasing work

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU-Accelerated NAMD Issues
• Serial performance

– Kernel developed in 2007 for G80 GPU, CUDA 1.0
– Strict memory coalescing rules, no atomic operations
– Remaining CPU code limits performance

• Parallel scaling
– Distributing work to GPU – reuse CPU decomposition
– Overlapping CPU, GPU, and network – SC08 paper
– Sharing GPU between multiple CPU cores – unresolved

• Some advanced simulation methods not supported
– GPU register memory restricts algorithm complexity

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

GPU-Accelerated NAMD Plans
• Serial performance

– Target NVIDIA Fermi architecture
– Revisit GPU kernel design decisions made in 2007
– Improve performance of remaining CPU code

• Parallel scaling
– Target NSF Track 2D Keeneland cluster at ORNL
– Finer-grained work units on GPU (feature of Fermi)
– One process per GPU, one thread per CPU core
– Dynamic load balancing of GPU work

• Wider range of simulation options and features

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Conclusions and Outlook

• CUDA today is sufficient for
– Single-GPU acceleration (the mass market)
– Coarse-grained multi-GPU parallelism

• Enough work per call to spin up all multiprocessors

• Improvements in CUDA are needed for
– Assigning GPUs to processes
– Sharing GPUs between processes
– Fine-grained multi-GPU parallelism

• Fewer blocks per call than chip has multiprocessors
– Moving data between GPUs (same or different node)

• Fermi addresses some but not all of these

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

Acknowledgements
• Theoretical and Computational Biophysics Group,

University of Illinois at Urbana-Champaign
• Prof. Wen-mei Hwu, Chris Rodrigues, IMPACT Group,

University of Illinois at Urbana-Champaign
• Mike Showerman, Jeremy Enos, NCSA
• David Kirk, Massimiliano Fatica, others at NVIDIA
• UIUC NVIDIA CUDA Center of Excellence
• NIH support: P41-RR05969

http://www.ks.uiuc.edu/Research/gpu/

