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What is computational biology?

* “The use of mathematical and computational tools to simulate and
analyze the biophysical processes underlying biological phenomena.”*

* One long-term goal of computational biology is a dynamic model of an
entire cell under natural conditions.

* Such a model would allow detailed studies of genetic regulation, cell
differentiation, signaling, effects of drugs on cellular function, etc.

* The time and length scales involved make such a model currently
infeasible with a single simulation methodology.
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Overview

e Part 1: “Well mixed” stochastic simulation

e Part 2: Spatially resolved stochastic simulation

e Part 3: Simulation example: the E. coli. lac operon.



Analysis of biochemical reactions
Law of mass action: Reaction Format
rate= k[ A] First Order A—B
rate= k[A][B] SecondOrder A+ B —=C+ D

[A] = Concentration of A

Michaelis-Menten system:
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Analysis of biochemical reactions

ky R d[S]
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| This is a sample system, whereas typical
[\ biochemical systems may consist of hundreds or
thousands of such reactions.
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Biology is not deterministic!

(top) fingerprints of identical twins
(middle) cloned kitten and her ‘mother’

(bottom) genetically identical E. coli cells
responding differently to an identical
external environment.

Not all molecules in the cell exist in high
copy numbers. Many transcription
factors exist in only a few copies in each
cell.

1) Raser & O’Shea (1995) Science 2) Choi et al (2008) Science



Deterministic vs. Stochastic Simulation

e Deterministic models

— Every future state can be predicted from a set of initial
conditions, rate constants, and differential equations.

— All states can be determined once initial conditions are known;
hence deterministic.

e Stochastic models
— Elements of randomness are introduced.
— Fluctuations in the system can be measured.

— The low copy number of certain biological molecules
(transcription factors) result in stochastic behavior.

So how do we model a system stochastically?



The Chemical Master Equation

P(x,t) represents the probability that a system will be in a state x at time t, where
P(x,t) =P X,(t) = x,X,(#) = x,,..X (1) = x, |

The time evolution of p(x,t) is described by the chemical master equation:

dP,() X _ _
. _Z[aj(n D))P, , ()=a;(n)P,(1)]

Where aj(n) is the propensity of reaction R, defined such that a,(n) dt is the
probability that the reaction will occur in the time interval [t, t+dt] given that
X(t) = n. D represents the vector of step changes that will occur for each

chemical species after completion of reaction R, M refers to the number of
reactions.

1) McQuarry, D. A (1967) J. Appl. Prob.

See Gillespie, D.T. (1992) Physica A for a rigorous derivation of the chemical master equation and it’s relation to the SSA.



Gillespie’s Stochastic Simulation
Algorithm (SSA)*

* Time evolution of system is not a continuous
process.

 Molecule concentrations can only change by
discrete amounts.

* Chemical reactions occur when two species
collide.

* Probabilities of collision can be calculated for any
number of molecules in a volume.

* Algorithm assumes a ‘well mixed’ environment:
all reactions are equally probable in any region of
the system.

1) Gillespie, D.T. (1977) J. Phys. Chem



Gillespie’s SSA

The Gillespie algorithm provides a stochastic solution to the chemical master
equation, which is frequently impossible to solve analytically. Inputs to the
algorithm include a set of rates for each of M reactions:

k=[k.k,,...k, ]

an initial state describing the initial numbers of N molecule types:

X=[X,X,,..X\]
and an MxN stoichiometry matrix:

E S ES P
E+SSES[-1 -1 1 0
ESSE+S|1 1 -1 0
ESSE+P|1 0 -1 1




Stochastic Rate Constants and Reaction Propensities:

Each deterministic rate constant k; is translated into a stochastic rate constant c;:

Zeroth Order: €, = ki . NA -V

First Order: Ci = k

l

k.

l

Second Order: Ci =
N,V

The propensity a; is calculated for

each reaction, given the current state:

Zeroth Order: ai = Ci
First Order: al. = Ci - X

Second Order: al. = Ci - XY

where N, = Avogadro’s Number
and V = system volume

Propensity for reaction

ky
E+S—FES

k
a4=——E-S
N,V



Gillespie’s SSA

kl
The total reaction propensity for E -+ S —— ES
a given state is calculated: k
M 1
, N,V
i=1
and the time to next reaction T is K
calculated using random number r, [0:1): ES 2; E + S
1
T= ——*lnl’i
a a, =k,- ES

The next reaction to occur is chosen based on
reaction propensities and random number r, [0:1)

ks
such that: ES —> E —+ P

O<rna <a

a, =k,  ES
The state vector is updated based on the
stoichiometry matrix and the time is «
updated. This is repeated whilet<t, . a =a, +a,+a



GPU Memory Model

eDevice Memory: Device
eLarge (max 4 GB in Tesla, more ".
in Fermi) *
Multiprocessor 2
oSlow (400 clock cycles for Multiprocessor 1
access)

eCoalescing a concern
eShared Memory:

eSmall (16 KB Tesla / 64 KB : -' SN, B
Fermi) i

eFast (1 clock cycle)

eBank conflicts a concern (not so
much in Fermi)

eShared across threads of the
same block




GPU Implementation

Parallelization within algorithm not obvious.
Individual Gillespie runs do not need to share data.

Threads can share the same S-matrix and rate
constant matrix within a block

Multiple Gillespie runs can be executed
simultaneously, one per thread.
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Implementation

Shared Memory




Avoiding Bank Conflicts
State vector storage per thread

Shared Memory Banks (16 in Tesla/32 in Fermi)
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Stochastic vs. Deterministic Solutions to
the Michaelis-Menten System
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GPU vs CPU performance

My implementation of the algorithm achieves a maximum 35X speedup
over a CPU implementation on a simple molecule dimerization.

Li and Petzold® present a 200X speedup in their recent 2009 publication,
although the differences may be more in the speed of the respective
CPU implementations than in the GPU implementations.

GPU vs CPU performance (Dimerization)

1500 ' ' L L | ' ' L T
—Li & Petzold CPU implementation
—Li & Petzold GPU implementation
My CPU implementation
—My GPU implementation
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Num executions
1) Li & Petzold (2009) International Journal of High Performance Computing Applications



Overview

e Part 1: “Well mixed” stochastic simulation

e Part 2: Spatially resolved stochastic simulation

e Part 3: Simulation example: the E. coli. lac operon.



The in vivo environment:
The cell is not well-mixed!

e The cellular environment is crowded!

* Escherichia coliis a model organism
for many biological studies’:

— 2 um long, 0.8 um diameter
— 18,000 ribosomes (right)
— 2 million proteins

— 18 million small organic
molecules

— ~2 chromosomes 4-5 million base
pairs (1.5 mm each, when fully
extended)

— 30-50% of the cellular volume is
occupied by molecules other
than water

1) Sundararaj et al. (2004) Nucl Acids Res 32:D293; CyberCell Database (http://redpoll.pharmacy.ualberta.ca/CCDB)



In vivo diffusion on a lattice

e To approximate an in vivo environment, we fill 50% of the
volume with obstacles of varying sizes.

* We use the size classes and populations defined by Ellison
and colleagues from analysis of proteomic data regarding

relative cellular protein populations*.
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1) Ridgway et al., Biophys J (2008)



1) Karapiperis

Traditional lattice diffusion

Traditional lattice-based diffusion methods'

invoke a particle random
site on a lattice (L) with s

y moving from site to
pacing A.

Each lattice site is located on the lattice at

position

7= a\ + b\J + c\k.

Particles move from site to in discrete jumps in
a single dimension at each timestep

(£, £N\], or £ Nk ).

& Blankleider (1994) Physica D



3D diffusion coefficient

* |t can be shown that, if the probability of
moving in any direction is p and the
probability of staying at the lattice site is p,
(po + 2d - p = 1, where d is the
dimensionality), then the model obeys the
standard diffusion equation,

0
aNa(f; t) = DV*N,(T, 1),
where D is the diffusion coefficient,
)\2

2dT



GPU implementation and 3D lattices

* Basic implementation of this model on a GPU
is straightforward: load, choose, move.

 The GPU processes many calculations in
parallel, but each calculation is limited in
terms of the amount of memory it can access.

* Processing a 3D block of the lattice requires
many apron sites.
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KiB Shared Memory

Shared memory limitations for 3D lattice

Apron sites increase both the memory usage and the number
of redundant calculation that need to be performed

At 8 sites per side, half of the 4 KiB needed are for apron sites
and half of the calculations are redundant.

Switching to a 1D model eliminates these issues.

Shared Memory Usage . ) Apron Calculation Overhead
T T T T T \ T 10 T T T T T
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1D multiparticle diffusion model

* In a 1D diffusion model, each particle diffuses
independently in each dimension™.

* At each time step a particle has probabilities of moving in
the minus direction, staying at the site, or moving in the
plus direction for the x (p_1,Po,P1), Y (4.1,90,9,), and z
(ry,rory) dimensions.

* The net probability of moving to one of the 26
neighboring sites is the the product of the probabilities
of the specific x-y-z move.

A A A
-hK k +hk
A A A
£ oa A AN £ A A AN £ A AN
-Ad i +Al -Ad i +A - I +A

P.1G41 | PoQ1M. | P1G474 +Aj| P-191f0 [ Pol1To [ P194fo +ij P.1Q4T4 | PoQ1fy | P1Q4T4

>

+A

(1) \
P.1%"0 | Po9ofo | P19 j| P-1%"1 | Po9of1 | P10

—

p'1q0r-1 quOr.1 p1 qol'_1

—

A |P-49471| PoQ.47-1 | P19.4T.4 =M | P-19.47 | PoQ.17o | P19.1To -7-1'\ P.19.4T1| Po9-1T1 | P19.474

1) Roberts, Stone, Sepulveda, Hwu, Luthey-Schulten (2009) The Eighth IEEE International Workshop on High-Performance Computational Biology



Free diffusion on a lattice

To check that the GPU

800

implementation agrees with _7

600 -

the model, we ran free gfﬁﬁﬁ
simulations of particles freelyézgg-
B 00l

100 H

diffusing on a periodic lattice
(256x256x256, 2 nm spacing,
10 ns time step, natural D of
200 nm?/us).

Particle distribution in each
dimension should be
Gaussian,
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Long-time, whole-cell simulations

10

In Vivo Diffusion

very long times, into the seconds on a single
GPU.

Lattice Size Spacing | Time Step | Calculation Performance Simulation Performance
(nm) (s) (x 10° site updates/sec) (sec/GPU-day)
FX5600 GTX280 FX5600 | GTX280 | Speedup

64x64x128 20 8.00 219 533 290 700 2.4X

64x64x128 16 5.12 212 522 180 440 2.4X
128 x 128 %256 10 2.00 310 781 13 32 2.5X
128 x 128 x 256 9 1.62 307 747 10 25 2.5X
128 x 128 x 256 8 1.28 302 776 8.0 20 2.5X
256x256x512 7 0.94 349 648 0.85 1.6 1.8X
256x256x512 6 0.72 348 647 0.65 1.2 1.8X
256x256x512 5 0.50 347 645 0.45 0.83 1.8X
256x256x512 4 0.32 346 642 0.29 0.52 1.8X

* In vivo diffusion results show the correct o~
qualitative behavior, but a higher final D (10%) £ | |
compared to Brownian dynamics simulations. %

* Brownian dynamics must calculate each 2 I
particle, can only scale in vivo simulations to o -
~100 us. R A

* Lattice based models sacrifice accuracy to reach S

D=

50.00

10.00

-2
10



How to measure GPU performance?

* Since our technique is a native GPU algorithm, no
optimized CPU version exists by which to
measure its performance..

Calculation FX5600 GTX280
Time | % | Performance’ | Time | % | Performance’ Speedup
(ms) (ms)
Load lattice block 5.2 20 13 GB/s 22 16 30 GB/s 24X
Random number generation* 7.0 27 48 GOPS 3.8 28 88 GOPS 1.8X
Particle movement decision 7.7 29 109 GOPS 4.4 33 191 GOPS 1.8X
Particle propagation 3.6 13 94 GOPS 1.6 12 209 GOPS 22X
Store lattice block 2.9 11 23 GB/s 1.5 11 44 GB/s 1.9X
Total 26.4 | 100 13.5 | 100 1.9X

"Bandwidth rates were calculated as four bytes times the number of lattice sites being transferred divided by the runtime. Operation
rates were calculated as the number of logical operations per site times the number of lattice sites divided by the runtime.
*Operation count was calculated using 64-bit operations, but current hardware implements 64-bit operations using 32-bit instruct-
ions. Performance calculated using the 32-bit instruction count (88) yields 210 GIPS and 387 GIPS, respectively.




Overview

e Part 1: “Well mixed” stochastic simulation

e Part 2: Spatially resolved stochastic simulation

e Part 3: Simulation example: the E. coli. lac operon.



Lac Circuit Overview
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Spatially-resolved stochastic simulation of
the entire cell cycle of E.coli on the GPU
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