
N A T H A N E L L I N G W O O D

U N I V E R S I T Y O F I O W A

A D V I S O R : C H I N G - L O N G L I N

8 / 0 7 / 1 0

‘Regional Deposition of Particles in
an Image Based Airway Model of

the Human Lung’

CFD and Lagrangian Particle Tracking

• CFD utilized to simulate pulmonary air flow
in a multi-scale model of the human lungs

• CT and MRI data are used to construct
realistic model of lung airway geometry

• LES simulation run with CT based lung
geometry of tracheo-bronchial region, from
the upper airways to the 6th generation of the
central conducting airways

• Image-based velocity boundary conditions at

terminal exits

CFD and Lagrangian Particle Tracking

• Original mesh geometry consists of 899,465
nodes and 4,644,447 tetrahedral elements,
partitioned into 65 sub-volumes

• Refined mesh geometry consists of 1,528,932
nodes and 8,063,559 tetrahedral elements

• 2.16 s total simulation time for one full
breath at 85% TLC; fluid data in time-steps of
0.048 s

• Data files are ~350MB for each 0.048s
interval of fluid and mesh/node data

• Neighbor element data ~280MB

Lagrangian Particle Tracking

 Particle tracking is a post-processing step after the fluid
solver obtains the CFD solution

 Assumptions:

 Brownian motion of particles not considered in airway

 One-way coupling (no Coulomb interactions)

 Particles are initialized as a cylindrical bolus that consists of
10,000 perfectly spherical particles located at the mouth inlet

 Radii of 2.5, 10 and 30 um used in regional deposition
simulations

Lagrangian Particle Tracking Code

 1. Reads in and stores a 3D dataset ~350MB, and initialize

 2. Linear interpolation of particle velocity (see 3.)

 3. Integrates equation of motion forward in time for same
particle (from tn to tn+1, in terms of fluid data)

 4. SALT algorithm searches for the tetrahedral element
particle resides in, after integration

 5. Repeat for each particle

 6. Check if deposited and store locations and velocities of
all particles

 As time progress load next 3D data set and repeat

 Tecplot used for visualization after completion

2.5 um particles 30 um particles

Particle Tracking Visuals

Possible impact of work

 CFD was able to predict lobar volume changes
consistent with observed physiology

 Modeling methods could help explain why a tumor
might appear in the left lung or determine the cause
of asthma in certain individuals

 With increased degree of accuracy can help to
improve drug delivery

Goals for GPU Implementation

 Improve run speed from several hours to …

 Track hundreds of thousands to millions of particles

 Track particles throughout the entire airway tree, not
just 6th generation (3D data sets estimated to be
several GB for each 0.48s time interval of fluid/mesh
data)

 Real-time interaction

Lagrangian Particle Tracking Code

 Load fluid data at time-step

 (Initialize particle location/velocity; overwritten)

 Do ip=1, 10000
 Velocity Verlet Scheme

 SALT

 Check if particle deposited

 Write particle data, element particle resides in

 End do

 Load next set of fluid data. Repeat

Key algorithms in CPU approach

 Velocity Verlet Scheme

 SALT (Search and Locate Algorithm for Linear Tetrahedra

by Allievi and Bermejo)

SALT (code excerpt)

…delta=(xx(2)-xx(1))*(yy(3)-yy(1))*(zz(4)-zz(1))

& -(xx(2)-xx(1))*(zz(3)-zz(1))*(yy(4)-yy(1))

& -(xx(3)-xx(1))*(yy(2)-yy(1))*(zz(4)-zz(1))

& +(xx(3)-xx(1))*(zz(2)-zz(1))*(yy(4)-yy(1))

& +(xx(4)-xx(1))*(yy(2)-yy(1))*(zz(3)-zz(1))

& -(xx(4)-xx(1))*(zz(2)-zz(1))*(yy(3)-yy(1))

p = 1.0/6.0

q = 1.0/2.0

r = 1.0/6.0

Gfx = rx(ip)-xx(1)*(1.0-p-q-r)-xx(2)*p-xx(3)*q-xx(4)*r

Gfy = ry(ip)-yy(1)*(1.0-p-q-r)-yy(2)*p-yy(3)*q-yy(4)*r

Gfz = rz(ip)-zz(1)*(1.0-p-q-r)-zz(2)*p-zz(3)*q-zz(4)*r

p1 = p + 1.d0/delta*Gfx*

& ((yy(3)-yy(1))*(zz(4)-zz(1))-(zz(3)-zz(1))*(yy(4)-yy(1)))

& + 1.d0/delta*Gfy*

& ((xx(4)-xx(1))*(zz(3)-zz(1))-(xx(3)-xx(1))*(zz(4)-zz(1)))

& + 1.d0/delta*Gfz*

& ((xx(3)-xx(1))*(yy(4)-yy(1))-(xx(4)-xx(1))*(yy(3)-yy(1)))

q1 = q + 1.d0/delta*Gfx*

& ((zz(2)-zz(1))*(yy(4)-yy(1))-(zz(4)-zz(1))*(yy(2)-yy(1)))

& + 1.d0/delta*Gfy*

& ((xx(2)-xx(1))*(zz(4)-zz(1))-(zz(2)-zz(1))*(xx(4)-xx(1)))

& + 1.d0/delta*Gfz*

& ((yy(2)-yy(1))*(xx(4)-xx(1))-(xx(2)-xx(1))*(yy(4)-yy(1)))

r1 = r + 1.d0/delta*Gfx*

& ((yy(2)-yy(1))*(zz(3)-zz(1))-(zz(2)-zz(1))*(yy(3)-yy(1)))

& + 1.d0/delta*Gfy*

& ((zz(2)-zz(1))*(xx(3)-xx(1))-(xx(2)-xx(1))*(zz(3)-zz(1)))

& + 1.d0/delta*Gfz*

& ((xx(2)-xx(1))*(yy(3)-yy(1))-(xx(3)-xx(1))*(yy(2)-yy(1)))

basismax = max(1.d0-p1-q1-r1,p1)

basismax = max(basismax,q1)

basismax = max(basismax,r1)

basismin = min(1.d0-p1-q1-r1,p1)

basismin = min(basismin,q1)

basismin = min(basismin,r1)

signmax = (basismax-1.d0)/abs(basismax-1.d0)

signmin = basismin/abs(basismin)

if(signmax.le.0.d0) then

if(signmin.ge.0.d0) then

ixfz(ip) = 1

incell(ip) = ie

call involume(ip,ie)

call Map_vel(ip,ie)

goto 2766

endif

endif

basismin = min(1.d0-p1-q1-r1,p1)

basismin = min(basismin,q1)

basismin = min(basismin,r1)

if(basismin.eq.1.d0-p1-q1-r1) lside = 1

if(basismin.eq.p1) lside = 2

if(basismin.eq.q1) lside = 3

if(basismin.eq.r1) lside = 4

…

List of challenges expected for a GPU
implementation

 The I/O problem and data storage in GPU/CPU in
step 1

 The parallel version of SALT search algorithm in
GPU (step 2)

 Steps 3 and 4 require parallelization as well

 Partition of the total particles into subunits running
in different GPU/CPU cores (step 5)

 I/O for step 6

 Code is in Fortran, not C

Acknowledgements

 Ching-Long Lin

 Merryn Tawhai

 Eric Hoffman

 Haribalan Kumar

 Jiwoong Choi

 Youbing Yin

 Andrew Lambert

