
N A T H A N E L L I N G W O O D

U N I V E R S I T Y O F I O W A

A D V I S O R : C H I N G - L O N G L I N

8 / 0 7 / 1 0

‘Regional Deposition of Particles in
an Image Based Airway Model of

the Human Lung’

CFD and Lagrangian Particle Tracking

• CFD utilized to simulate pulmonary air flow
in a multi-scale model of the human lungs

• CT and MRI data are used to construct
realistic model of lung airway geometry

• LES simulation run with CT based lung
geometry of tracheo-bronchial region, from
the upper airways to the 6th generation of the
central conducting airways

• Image-based velocity boundary conditions at

terminal exits

CFD and Lagrangian Particle Tracking

• Original mesh geometry consists of 899,465
nodes and 4,644,447 tetrahedral elements,
partitioned into 65 sub-volumes

• Refined mesh geometry consists of 1,528,932
nodes and 8,063,559 tetrahedral elements

• 2.16 s total simulation time for one full
breath at 85% TLC; fluid data in time-steps of
0.048 s

• Data files are ~350MB for each 0.048s
interval of fluid and mesh/node data

• Neighbor element data ~280MB

Lagrangian Particle Tracking

 Particle tracking is a post-processing step after the fluid
solver obtains the CFD solution

 Assumptions:

 Brownian motion of particles not considered in airway

 One-way coupling (no Coulomb interactions)

 Particles are initialized as a cylindrical bolus that consists of
10,000 perfectly spherical particles located at the mouth inlet

 Radii of 2.5, 10 and 30 um used in regional deposition
simulations

Lagrangian Particle Tracking Code

 1. Reads in and stores a 3D dataset ~350MB, and initialize

 2. Linear interpolation of particle velocity (see 3.)

 3. Integrates equation of motion forward in time for same
particle (from tn to tn+1, in terms of fluid data)

 4. SALT algorithm searches for the tetrahedral element
particle resides in, after integration

 5. Repeat for each particle

 6. Check if deposited and store locations and velocities of
all particles

 As time progress load next 3D data set and repeat

 Tecplot used for visualization after completion

2.5 um particles 30 um particles

Particle Tracking Visuals

Possible impact of work

 CFD was able to predict lobar volume changes
consistent with observed physiology

 Modeling methods could help explain why a tumor
might appear in the left lung or determine the cause
of asthma in certain individuals

 With increased degree of accuracy can help to
improve drug delivery

Goals for GPU Implementation

 Improve run speed from several hours to …

 Track hundreds of thousands to millions of particles

 Track particles throughout the entire airway tree, not
just 6th generation (3D data sets estimated to be
several GB for each 0.48s time interval of fluid/mesh
data)

 Real-time interaction

Lagrangian Particle Tracking Code

 Load fluid data at time-step

 (Initialize particle location/velocity; overwritten)

 Do ip=1, 10000
 Velocity Verlet Scheme

 SALT

 Check if particle deposited

 Write particle data, element particle resides in

 End do

 Load next set of fluid data. Repeat

Key algorithms in CPU approach

 Velocity Verlet Scheme

 SALT (Search and Locate Algorithm for Linear Tetrahedra

by Allievi and Bermejo)

SALT (code excerpt)

…delta=(xx(2)-xx(1))*(yy(3)-yy(1))*(zz(4)-zz(1))

& -(xx(2)-xx(1))*(zz(3)-zz(1))*(yy(4)-yy(1))

& -(xx(3)-xx(1))*(yy(2)-yy(1))*(zz(4)-zz(1))

& +(xx(3)-xx(1))*(zz(2)-zz(1))*(yy(4)-yy(1))

& +(xx(4)-xx(1))*(yy(2)-yy(1))*(zz(3)-zz(1))

& -(xx(4)-xx(1))*(zz(2)-zz(1))*(yy(3)-yy(1))

p = 1.0/6.0

q = 1.0/2.0

r = 1.0/6.0

Gfx = rx(ip)-xx(1)*(1.0-p-q-r)-xx(2)*p-xx(3)*q-xx(4)*r

Gfy = ry(ip)-yy(1)*(1.0-p-q-r)-yy(2)*p-yy(3)*q-yy(4)*r

Gfz = rz(ip)-zz(1)*(1.0-p-q-r)-zz(2)*p-zz(3)*q-zz(4)*r

p1 = p + 1.d0/delta*Gfx*

& ((yy(3)-yy(1))*(zz(4)-zz(1))-(zz(3)-zz(1))*(yy(4)-yy(1)))

& + 1.d0/delta*Gfy*

& ((xx(4)-xx(1))*(zz(3)-zz(1))-(xx(3)-xx(1))*(zz(4)-zz(1)))

& + 1.d0/delta*Gfz*

& ((xx(3)-xx(1))*(yy(4)-yy(1))-(xx(4)-xx(1))*(yy(3)-yy(1)))

q1 = q + 1.d0/delta*Gfx*

& ((zz(2)-zz(1))*(yy(4)-yy(1))-(zz(4)-zz(1))*(yy(2)-yy(1)))

& + 1.d0/delta*Gfy*

& ((xx(2)-xx(1))*(zz(4)-zz(1))-(zz(2)-zz(1))*(xx(4)-xx(1)))

& + 1.d0/delta*Gfz*

& ((yy(2)-yy(1))*(xx(4)-xx(1))-(xx(2)-xx(1))*(yy(4)-yy(1)))

r1 = r + 1.d0/delta*Gfx*

& ((yy(2)-yy(1))*(zz(3)-zz(1))-(zz(2)-zz(1))*(yy(3)-yy(1)))

& + 1.d0/delta*Gfy*

& ((zz(2)-zz(1))*(xx(3)-xx(1))-(xx(2)-xx(1))*(zz(3)-zz(1)))

& + 1.d0/delta*Gfz*

& ((xx(2)-xx(1))*(yy(3)-yy(1))-(xx(3)-xx(1))*(yy(2)-yy(1)))

basismax = max(1.d0-p1-q1-r1,p1)

basismax = max(basismax,q1)

basismax = max(basismax,r1)

basismin = min(1.d0-p1-q1-r1,p1)

basismin = min(basismin,q1)

basismin = min(basismin,r1)

signmax = (basismax-1.d0)/abs(basismax-1.d0)

signmin = basismin/abs(basismin)

if(signmax.le.0.d0) then

if(signmin.ge.0.d0) then

ixfz(ip) = 1

incell(ip) = ie

call involume(ip,ie)

call Map_vel(ip,ie)

goto 2766

endif

endif

basismin = min(1.d0-p1-q1-r1,p1)

basismin = min(basismin,q1)

basismin = min(basismin,r1)

if(basismin.eq.1.d0-p1-q1-r1) lside = 1

if(basismin.eq.p1) lside = 2

if(basismin.eq.q1) lside = 3

if(basismin.eq.r1) lside = 4

…

List of challenges expected for a GPU
implementation

 The I/O problem and data storage in GPU/CPU in
step 1

 The parallel version of SALT search algorithm in
GPU (step 2)

 Steps 3 and 4 require parallelization as well

 Partition of the total particles into subunits running
in different GPU/CPU cores (step 5)

 I/O for step 6

 Code is in Fortran, not C 

Acknowledgements

 Ching-Long Lin

 Merryn Tawhai

 Eric Hoffman

 Haribalan Kumar

 Jiwoong Choi

 Youbing Yin

 Andrew Lambert

